首页 | 本学科首页   官方微博 | 高级检索  
     


Quantitative calibration of radiofrequency NMR Stark effects
Authors:Tarasek Matthew R  Kempf James G
Affiliation:Department of Chemistry & Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA.
Abstract:Nuclear magnetic resonance (NMR) Stark responses can occur in quadrupolar nuclei for an electric field oscillating at twice the usual NMR frequency (2ω(0)). Calibration of responses to an applied E field is needed to establish nuclear spins as probes of native E fields within material and molecular systems. We present an improved approach and apparatus for accurate measurement of quadrupolar Stark effects. Updated values of C(14) (the response parameter in cubic crystals) were obtained for both (69)Ga and (75)As in GaAs. Keys to improvement include a modified implementation of voltage dividers to assess the 2ω(0) amplitude, |E|, and the stabilization of divider response by reduction of stray couplings in 2ω(0) circuitry. Finally, accuracy was enhanced by filtering sets of |E| through a linear response function that we established for the radiofrequency amplifier. Our approach is verified by two types of spectral results. Steady-state 2ω(0) excitation to presaturate NMR spectra yielded C(14) = (2.59 ± 0.06) × 10(12) m(-1) for (69)Ga at room-temperature and 14.1 T. For (75)As, we obtained (3.1 ± 0.1) × 10(12) m(-1). Both values reconcile with earlier results from 77 K and below 1 T, whereas current experiments are at room temperature and 14.1 T. Finally, we present results where few-microsecond pulses of the 2ω(0) field induced small (tens of Hz) changes in high-resolution NMR line shapes. There too, spectra collected vs |E| agree with the model for response, further establishing the validity of our protocols to specify |E|.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号