首页 | 本学科首页   官方微博 | 高级检索  
     


Innovative design approaches for large wind turbine blades
Authors:K J Jackson  M D Zuteck  C P van Dam  K J Standish  D Berry
Abstract:A preliminary design study of an advanced 50 m blade for utility wind turbines is presented and discussed. The effort was part of the Department of Energy WindPACT Blade System Design Study with the goal to investigate and evaluate design and manufacturing issues for wind turbine blades in the 1–10 MW size range. Two different blade designs are considered and compared in this article. The first is a fibreglass design, while the second design selectively incorporates carbon fibre in the main structural elements. The addition of carbon results in modest cost increases and provides significant benefits, particularly with respect to blade deflection. The structural efficiency of both designs was maximized by tailoring the thickness of the blade cross‐sections to simplify the construction of the internal members. Inboard the blades incorporate thick blunt trailing edge aerofoils (flatback aerofoils), while outboard more conventional sharp trailing edge high‐lift aerofoils are used. The outboard section chord lengths were adjusted to yield the least complex and costly internal blade structure. A significant portion of blade weight is related to the root buildup and metal hardware for typical root attachment designs. The results show that increasing the number of studs has a positive effect on total weight, because it reduces the required root laminate thickness. The aerodynamic performance of the blade aerofoils was predicted using computational techniques that properly simulate blunt trailing edge flows. The performance of the rotor was predicted assuming both clean and soiled blade surface conditions. The rotor is shown to provide excellent performance at a weight significantly lower than that of current rotors of this size. Copyright © 2004 John Wiley & Sons, Ltd.
Keywords:rotor aerofoils  blunt trailing edge  structures  composite materials  carbon fibre  fibreglass  root attachment
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号