首页 | 本学科首页   官方微博 | 高级检索  
     

无域积分的弹塑性边界元法的非线性互补方法
引用本文:邓琴, 李春光, 王水林, 葛修润. 无域积分的弹塑性边界元法的非线性互补方法[J]. 工程力学, 2012, 29(7): 49-55. DOI: 10.6052/j.issn.1000-4750.2010.10.0782
作者姓名:邓琴  李春光  王水林  葛修润
作者单位:中国科学院武汉岩土力学研究所岩土力学与工程国家重点实验室, 武汉 430071
基金项目:国家自然科学基金项目(50804044);中国科学院武汉岩土力学重点实验室开放课题研究项目(Z00601)
摘    要:该文引入非线性互补方法来求解边界元法的弹塑性问题,其中方程组由内部点应力方程和反映塑性本构定律的互补函数形成。涉及的域积分采用径向积分法转化为边界积分。通过受内压的厚壁圆筒的应力、位移和荷载-位移情况表明了该算法的精度。

关 键 词:非线性互补方法  边界元法  弹塑性问题  域积分  径向积分法
收稿时间:2010-10-28
修稿时间:2010-12-05

NONLINEAR COMPLEMENTARITY APPROACH FOR ELASTOPLASTIC BEM WITHOUT INTERNAL CELL
DENG Qin, LI Chun-guang, WANG Shui-lin, GE Xiu-run. NONLINEAR COMPLEMENTARITY APPROACH FOR ELASTOPLASTIC BEM WITHOUT INTERNAL CELL[J]. Engineering Mechanics, 2012, 29(7): 49-55. DOI: 10.6052/j.issn.1000-4750.2010.10.0782
Authors:DENG Qin  LI Chun-guang  WANG Shui-lin  GE Xiu-run
Affiliation:State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
Abstract:A nonlinear complementarity approach is presented to solve elastoplastic problems by boundary element method,in which the equations are formulated by stress equations of internal points and complementarity function obtained from plasticity constitutive law.The domain integrals involved are transformed into boundary integrals by radial integration method.The algorithm’s precision is demonstrated by stress,displacement and load-displacement results of a thick-walled cylinder subjected to internal pressure.
Keywords:nonlinear complementarity approach  boundary element method  elastoplastic problems  domain integrals  radial integration method
本文献已被 CNKI 等数据库收录!
点击此处可从《工程力学》浏览原始摘要信息
点击此处可从《工程力学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号