首页 | 本学科首页   官方微博 | 高级检索  
     


USAD: undetectable steganographic approach in DCT domain
Authors:Marwa Saidi  Olfa Mannai  Houcemeddine Hermassi  Rhouma Rhouma  Safya Belghith
Affiliation:1. Ecole Nationale d'Ingénieurs de Tunis, Université de Tunis El Manar, Tunis, Tunisiamarwoua.saidi@gmail.com marwa.saidi@enit.utm.tn"ORCIDhttps://orcid.org/0000-0002-2486-9750;2. Ecole Nationale d'Ingénieurs de Tunis, Université de Tunis El Manar, Tunis, Tunisia;3. Information Technology Department, Salalah College of Applied Sciences, Sultanate of Oman, Oman"ORCIDhttps://orcid.org/0000-0002-5715-4110
Abstract:In this work, we propose a new adaptive chaotic steganographic method based on the Discrete Cosine Transform (DCT) and a reversible mapping function. The mapping function is used to map the secret bits into their corresponding symbols. This mapping technique has to preserve the same dynamics, properties and distribution of the original DCT coefficients. The novelty of our approach is based on the adaptive selection phase of embedding spots. This selection is established through a blindness condition which is applied over each image of the database. The proposed embedding scheme within the middle DCT coefficients shows lower probability of detection and higher flexibility in extraction. We evaluate the detection of our method using the Ensemble Classifiers and a set of frequency and spatial domain feature extractors such as the Spatial domain Rich Model (SRM) features, Chen et al.'s 486-dimensional both inter- and intra-block Markov-based features and Liu's 216-dimensional adaptive steganography-based features.
Keywords:Adaptive steganography  binary classification  feature extraction  Discrete Cosine Transform  non-linear scrambled embedding  reversible mapping
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号