首页 | 本学科首页   官方微博 | 高级检索  
     

基于BPSO-NB算法的Android恶意应用检测方法
引用本文:韩静丹,孙 磊,王帅丽,王泽武. 基于BPSO-NB算法的Android恶意应用检测方法[J]. 计算机与现代化, 2017, 0(4): 109. DOI: 10.3969/j.issn.1006-2475.2017.04.022
作者姓名:韩静丹  孙 磊  王帅丽  王泽武
基金项目:国家重点研发计划项目(2016YFB0501900); 国防预研基金资助项目(910A26010306JB5201)
摘    要:为了提高Android恶意应用检测效率,将二值粒子群算法(BPSO,Binary Particle Swarm Optimization)用于原始特征全集的优化选择,并结合朴素贝叶斯(NB,Nave Bayesian)分类算法,提出一种基于BPSO-NB的Android恶意应用检测方法。该方法首先对未知应用进行静态分析,提取AndroidManifest.xml文件中的权限信息作为特征。然后,采用BPSO算法优化选择分类特征,并使用NB算法的分类精度作为评价函数。最后采用NB分类算法构建Android恶意应用分类器。实验结果表明,通过二值粒子群优化选择分类特征可以有效提高分类精度,缩短检测时间。

关 键 词:二值粒子群  朴素贝叶斯   特征选择   恶意应用检测  静态分析  
收稿时间:2017-05-08

Android Malware Application Detection Method Based on BPSO-NB
HAN Jing-dan,SUN Lei,WANG Shuai-li,WANG Ze-wu. Android Malware Application Detection Method Based on BPSO-NB[J]. Computer and Modernization, 2017, 0(4): 109. DOI: 10.3969/j.issn.1006-2475.2017.04.022
Authors:HAN Jing-dan  SUN Lei  WANG Shuai-li  WANG Ze-wu
Abstract: In order to improve the efficiency of Android malware application detection, the binary particle swarm optimization (BPSO) is used for optimal selection of complete ensemble of original features, combined with the Nave Bayesian (NB) classification algorithm,an Android malware detection method based on BPSO-NB algorithm is proposed. First, this method uses static analysis for unknown applications to extract the permission information in an AndroidManifest.XML file as a feature. Then, it uses the BPSO algorithm to optimize selected classification feature,  and uses the classification accuracy of  NB algorithm as the evaluation function. Finally, NB classification algorithm is used to construct classifier for Android malicious applications. Through cross experiment, BPSO-NB classification equipment has higher classification accuracy, and the optimal selection of BPSO algorithm classification characteristics under the condition of the security classification accuracy can effectively improve the efficiency of detection.
Keywords: binary particle swarm  Nave Bayesian  feature selection  malware application detection  static analysis  
点击此处可从《计算机与现代化》浏览原始摘要信息
点击此处可从《计算机与现代化》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号