首页 | 本学科首页   官方微博 | 高级检索  
     

一种鲁棒半监督建模方法及其在化工过程故障检测中的应用
引用本文:周乐,宋执环,侯北平,费正顺. 一种鲁棒半监督建模方法及其在化工过程故障检测中的应用[J]. 化工学报, 2017, 68(3): 1109-1115. DOI: 10.11949/j.issn.0438-1157.20161205
作者姓名:周乐  宋执环  侯北平  费正顺
作者单位:1.浙江科技学院自动化与电气工程学院, 浙江 杭州 310024;2.浙江大学控制科学与工程学院, 浙江 杭州 310027
基金项目:国家自然科学基金项目(61603342);浙江省自然科学基金项目(LQ15F030006);浙江省教育厅项目(Y201636867)。
摘    要:复杂化工过程的观测样本往往包含着测量噪声与少量的离群点数据,而这些受污染的数据会影响数据驱动的过程建模与故障检测方法的准确性。本文考虑了化工过程测量样本的这一实际情况,提出了一种鲁棒半监督PLVR模型(RSSPLVR),并利用核方法将其扩展为非线性的形式(K-RSSPLVR)。此类算法利用基于样本相似度的加权系数作为概率模型的先验参数,能有效消除离群点对建模的影响。利用加权后的建模样本,本文通过EM算法训练了RSSPLVR和K-RSSPLVR的模型参数,并提出了相应的故障检测算法。最后,通过TE过程仿真实验验证了所提出方法的有效性。

关 键 词:故障检测  鲁棒模型  半监督  过程控制  过程系统  主元分析  
收稿时间:2016-08-30
修稿时间:2016-12-03

Robust semi-supervised modelling method and its application to fault detection in chemical processes
ZHOU Le,SONG Zhihuan,HOU Beiping,FEI Zhengshun. Robust semi-supervised modelling method and its application to fault detection in chemical processes[J]. Journal of Chemical Industry and Engineering(China), 2017, 68(3): 1109-1115. DOI: 10.11949/j.issn.0438-1157.20161205
Authors:ZHOU Le  SONG Zhihuan  HOU Beiping  FEI Zhengshun
Affiliation:1.School of Automation and Electrical Engineering, Zhejiang University of Science and Technology, Hangzhou 310024, Zhejiang, China;2.College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
Abstract:In most complex chemical processes, measurements are often collected with noises and some outliers. These contaminated data would have negative effect on the accuracy of data-based process modelling and fault detection. A new robust semi-supervised PLVR model (RSSPLVR) was proposed by consideration of the real measuring environment in chemical processes and extended to a nonlinear model K-RSSPLVR with a kernel methodology. In both RSSPLVR and K-RSSPLVR, a weighted coefficient based on sample similarity among all observations was used as prior checking parameter of probability model to effectively eliminate influence of outliers on modelling. Model parameter training was accomplished by analysis of the weighted dataset with EM algorithm and a fault detection scheme was developed. Finally, TE process simulation demonstrated effectiveness of the proposed modelling methods.
Keywords:fault detection  robust model  semi-supervised learning  process control  process systems  principal component analysis  
点击此处可从《化工学报》浏览原始摘要信息
点击此处可从《化工学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号