首页 | 本学科首页   官方微博 | 高级检索  
     


Impact of molecular mass on the elastic modulus of thin polystyrene films
Authors:Jessica M. Torres  Bryan D. Vogt
Affiliation:a Flexible Display Center, Arizona State University, Tempe, AZ 85284, USA
b Polymers Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
Abstract:Surface wrinkling was used to determine the elastic modulus at ambient temperature of polystyrene (PS) films of varying thickness and relative molecular mass (Mn). A range of Mn from 1.2 kg/mol to 990 kg/mol was examined to determine if the molecular size impacts the mechanical properties at the nanoscale. Ultrathin films exhibited a decrease in modulus for all molecular masses studied here compared to the bulk value. For Mn > 3.2 kg/mol, the fractional change in modulus was statistically independent of molecular mass and the modulus began to deviate from the bulk as the thickness is decreased below ≈50 nm. An order of magnitude decrease in the elastic modulus was found when the film thickness was ≈15 nm, irrespective of Mn. However, an increase in the length scale for nanoconfinement was observed as the molecular mass was decreased below this threshold. The modulus of thin PS films with a molecular mass of 1.2 kg/mol deviated from bulk behavior when the film thickness was decreased below ≈100 nm. This result illustrates that the modulus of thin PS films does not scale with molecular size. Rather, the quench depth into the glass appears to correlate well with the length scale at which the modulus of the films deviates from the bulk, in agreement with molecular simulations from de Pablo and coworkers [31] and recent experimental work [35].
Keywords:Wrinkling   Nanomechanics   Thin films
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号