首页 | 本学科首页   官方微博 | 高级检索  
     


Studying mechanical microcontacts of fine particles with the quartz crystal microbalance
Authors:Ewa Vittorias  Hans-Jürgen Butt  Diethelm Johannsmann
Affiliation:a Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
b Institute of Physical Chemistry, Clausthal University of Technology, Arnold-Sommerfeld-Str. 4, 38678 Clausthal-Zellerfeld, Germany
Abstract:To study micromechanical adhesion, glass particles were deposited on a quartz crystal microbalance (QCM). Beforehand, a 160 nm-thick film of polystyrene (PS) had been spin-coated on the gold surface of the QCM. Shifts in the resonance frequency were monitored versus the oscillation amplitude. The aim was to analyse how QCM experiments reflect the state of adhesion. During oscillation, the motion of the particles and the induced frequency shift of the QCM are governed by a balance between inertial and contact forces. In order to vary the relative strength of the two, the diameter of the particles was varied between 5 and 20 μm. The adherence of the particles could be increased by annealing the PS film at 150 °C. Annealing led to the formation of a PS meniscus. For a semi-quantitative interpretation we have to take into account that the particles show a distribution of coupling constants.The vibration of the QCM changes the micromechanical contact between QCM surface and particles. There is an instantaneous and a long-term effect. Instantaneously, the oscillation induces partial slip. Under an oscillating load, part of the contact ruptures, which decreases the effective stiffness of the contact. In addition, there are long-term memory effects. The vibration of the QCM can lead to a consolidation and an increased coupling. However, it can also break the contact and even lead to detachment. Particles deform the PS surface and induce damage due to inertial forces.
Keywords:Adhesion  Atomic force microscope  Polystyrene  QCM  Rolling friction
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号