首页 | 本学科首页   官方微博 | 高级检索  
     

基于蚁群算法的矿井提升机减速器齿轮故障诊断
引用本文:王敏,潘宏侠,刘广璞. 基于蚁群算法的矿井提升机减速器齿轮故障诊断[J]. 起重运输机械, 2010, 0(6): 63-66
作者姓名:王敏  潘宏侠  刘广璞
作者单位:中北大学机械工程与自动化学院,太原,030051
摘    要:在研究蚁群优化神经网络训练算法的基础上,建立了矿井提升机减速器齿轮故障诊断模型。根据实测数据,分析研究信号并提取信号特征值,并应用训练后的BP神经网络诊断齿轮故障,实验表明效果良好,该模型网络的收敛速度大大提高,避免陷入局部最优解,用于减速器齿轮故障诊断准确可靠。

关 键 词:蚁群算法  神经网络  矿井提升机  减速器  齿轮  故障诊断

Mine hoist reducer gear failure diagnosis based on ant colony algorithm
Wang Min,Pan Hongxia,Liu Guangpu. Mine hoist reducer gear failure diagnosis based on ant colony algorithm[J]. Hoisting and Conveying Machinery, 2010, 0(6): 63-66
Authors:Wang Min  Pan Hongxia  Liu Guangpu
Abstract:On the basis of researching the optimization of neural network through ant colony algorithm,the mine hoist reducer gear failure diagnosis model is established. According to the measured data,the signal is analyzed and researched,and the characteristic value of signal is extracted to apply to the trained BP neural network diagnosis to gear failure. The experiment shows that the effect is good,the convergence speed of this model network is greatly increased to avoid local optimization solution,and it is precise and reliable in the reducer gear failure diagnosis.
Keywords:any colony algorithm  neural network  mine hoist  reducer  gear  failure diagnosis
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号