首页 | 本学科首页   官方微博 | 高级检索  
     


Process monitoring of a thermosetting resin using optical-fiber sensors in a microwave environment
Authors:Degamber  B Fernando  GF
Affiliation:Eng. Syst. Dept., Cranfield Univ., Swindon, UK;
Abstract:Conventional means of curing thermosetting resins used in advanced fiber-reinforced composites involves heating the sample in an oven or autoclave where heat is transferred to the sample through conduction and convection. In general, the cure schedules that are used can be time consuming and expensive. Hence, significant attempts are being made to improve the processing efficiency and productivity of this class of material. Microwave-based processing has been claimed to offer the advantage of a significantly faster processing time. In this study, two remote (noncontact) sensor systems were designed and developed to facilitate spectral-based quantitative process monitoring inside a custom-modified commercial microwave oven. The two fiber-optic sensor systems were 1) a noncontact optical-fiber reflectance probe and 2) a reusable transmission probe assembly. Spectroscopic data were obtained using the fiber-optic probes at specified microwave power levels. Since conventional metal-based temperature monitoring devices cannot be used in the microwave oven, a low-cost disposable fiber-optic probe was developed. This design was based on an optical fiber-based extrinsic Fabry-Perot interferometer (FPI). The extrinsic FPI temperature sensor demonstrated an accuracy of /spl plusmn/0.5/spl deg/C over the range from ambient to 300/spl deg/C. The temperature of the resin system was also measured simultaneously, along with the spectral data, to monitor the progress of the chemical reaction (curing).
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号