首页 | 本学科首页   官方微博 | 高级检索  
     


Recrystallization kinetics of microalloyed steels deformed in the intercritical region
Authors:E A Simielli  S Yue  J J Jonas
Affiliation:1. Department of Metallurgy, Institute de Pesquisa Tecnol?gica do Estado de S?o Paulo (IPT), Cidade Universitária, SP 05508, S?o Paulo, Brazil
2. Department of Metallurgical Engineering, McGill University, H3A 2A7, Montreal, PQ, Canada
Abstract:A plain carbon and two microalloyed steels were tested under interrupted loading conditions. The base steel contained 0.06 pct C and 1.31 pct Mn, and the other alloys contained single additions of 0.29 pct Mo and 0.04 pct Nb. Double-hit compression tests were performed on cylindrical specimens of the three steels at 820 °C, 780 °C, and 740 °C within the α + γ field. A’softening curve was determined at each temperature by the offset method. In parallel, the progress of ferrite recrystallization was followed on quenched specimens of the three steels by means of quantitative metallography. It was observed that, in the base steel, a recrystallizes more slowly thany. The addition of Mo retards recrystallization and has a greater influence on γ than on α recrystallization. This effect is in agreement with calculations based on the Cahn theory of solute drag. Niobium addition has an even greater effect on the recrystallization of the two phases. In this steel, the recrystallization of ferrite was incomplete at the three intercritical temperatures. Furthermore, the austenite remained completely unrecrystallized up to the maximum time involved in the experiments (1 hour). The metallographic results indicate that the nucleation of recrystallization occurs heterogeneously in the microstructure, the interface between ferrite and austenite being the preferred site for nucleation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号