首页 | 本学科首页   官方微博 | 高级检索  
     

基于聚类优化的非负矩阵分解方法及其应用
引用本文:栗茂林,梁霖,陈元明,徐光华,何康康. 基于聚类优化的非负矩阵分解方法及其应用[J]. 中国机械工程, 2018, 29(6): 720
作者姓名:栗茂林  梁霖  陈元明  徐光华  何康康
作者单位:1.西安交通大学工程坊,西安,7100492.西安交通大学机械工程学院,西安,710049
基金项目:国家自然科学基金资助项目(51575438)National Natural Science Foundation of China (No. 51575438)
摘    要:针对不断增加的机电系统运行状态信息,传统的特征提取和选择方法已无法满足需求。根据非负矩阵分解典型算法的特点,基于非负矩阵分解的聚类特性,提出了一种面向故障诊断的分解方法。通过分类能力和迭代效率的对比分析,选择了相关性约束和稀疏性约束的改进型交替最小二乘迭代算法,确定了低维嵌入维数及迭代初始化方法,在UCI测试数据集和TEP系统的特征选择应用中验证了该方法的有效性。

关 键 词:非负矩阵分解  聚类  迭代算法  特征选择  

Non-negative Matrix Factorization Based on Clustering and Its Application
LI Maolin,LIANG Lin,CHEN Yuanming,XU Guanghua,HE Kangkang. Non-negative Matrix Factorization Based on Clustering and Its Application[J]. China Mechanical Engineering, 2018, 29(6): 720
Authors:LI Maolin  LIANG Lin  CHEN Yuanming  XU Guanghua  HE Kangkang
Affiliation:1.Engineering Workshop,Xi'an Jiaotong University,Xi'an,7100492.School of Mechanical Engineering,Xi'an Jiaotong University,Xi'an,710049
Abstract:With the increasing complexity of electromechanical system state informations, traditional feature extraction and selection methods were unable to meet the needs. According to the characteristics of conventional non-negative matrix factorization(NMF) algorithm, a NMF method for monitoring and fault diagnosis was proposed based on the clustering property of NMF. By comparing classification accuracy and iteration efficiency, an improved alternating least square iterative algorithm with sparsity and correlation constraints was selected, and the low-dimensional embedded dimension and iterative initialization method were also determined. Experimental results to UCI test datasets and fault diagnosis of Tennessee-Eastman process(TEP) systems show that this approach is more effective to extract the fault features, and enhance the failure pattern capabilities.
Keywords:non-negative matrix factorization(NMF)   clustering   iterative algorithm   feature selection  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国机械工程》浏览原始摘要信息
点击此处可从《中国机械工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号