首页 | 本学科首页   官方微博 | 高级检索  
     


Shear band systems in plane strain extension: analytical solution and comparison with experimental results
Authors:L Röchter  D König  T Schanz  A Niemunis  T Triantafyllidis
Affiliation:1.Chair for Foundation Engineering, Soil and Rock Mechanics,Ruhr-Universit?t Bochum,Bochum,Germany;2.Institute of Soil Mechanics and Rock Mechanics,Karlsruhe Institute of Technology (KIT),Karlsruhe,Germany
Abstract:Shear banding represents a local failure mechanism of a soil structure as a response to shear loading. In soil structures of different spatial scales systems of regularly spaced shear bands can be observed as a consequence of extensional loading. The phenomenon of single shear bands, defined as thin zones of localized deformation with a discontinuity of the strain field at its boundaries, is well understood. Inside the shear band the material undergoes inelastic strain softening accompanied by shearing and dilation, whereas the material outside the shear band unloads accompanied by elastic contraction in extension tests. Despite numerous experimental and numerical investigations, the physical mechanisms and parameters determining the spacing of parallel shear bands remained unknown. The paper in hand presents an analytical solution for the spacing of the shear bands and a comparison with a large base of experimental data gained from 1g and ng (geotechnical centrifuge) model experiments. The analytical solution is based on the assumption that the elastic energy rate in the unloaded zone between the shear bands tends to a minimum value. The spacing was calculated as the energetically preferred solution for a broad range of cohesive-frictional granular materials. The dependency of the calculated spacing on initial and boundary conditions as well as on material parameters was found to be in good agreement with the experimental results.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号