首页 | 本学科首页   官方微博 | 高级检索  
     


A size-dependent thermodynamic model for coke crystallites: The carbon–hydrogen system up to 2500 K
Affiliation:1. Centre for Research in Computational Thermochemistry (CRCT), Department of Chemical Engineering, École Polytechnique, C.P. 6079, Succursale “Downtown”, Montreal, Quebec H3C 3A7, Canada;2. GTT-Technologies, D-52134 Herzogenrath, Germany;3. Åbo Akademi Process Chemistry Centre Inorganic Chemistry, Abo Akademi University, 20500 Turku Abo, Finland;1. NANO-ElecTronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia;2. NANO-SciTech Centre, Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia;3. Facuty of Electrical Engineering, UiTM Sarawak, Kampus Kota Samarahan, Jalan Meranek, Sarawak, Malaysia;1. Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Unidad Universitaria, Carretera Pachuca-Tulancingo Km 4.5, Col. Carboneras, Mineral de la Reforma, Hgo. CP 42184, Mexico;2. Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F. CP 04510, Mexico;3. División de Ingeniería en Nanotecnología, Universidad Politécnica del Valle de México, Av. Mexiquense, Tultitlán, Estado de México CP 54910, Mexico;1. School of Metallurgy and Environment, Central South University, Changsha 410083, China;2. The EMS Energy Institute and Leone Family Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, PA 16802, United States;3. College of Chemistry, Beijing Normal University, Beijing 100875, China;4. Department of Earth Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China;1. Department of Chemistry, Lancaster University, Bailrigg, Lancaster, UK;2. ALISTORE European Research Institute CNRS FR 3104, Hub de l’Energie, Rue Baudelocque, 80039, Amiens, France;3. The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, UK;4. Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, INFIQC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina;5. Facultad de Matemática, Astronomía, Física y Computacíon, IFEG-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina;1. Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan;2. Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 816-8580, Japan;3. Research Institute of Industrial Science and Technology, 67, Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, Republic of Korea;4. Department of Environmental Engineering, Hoseo University, Asan, Chung-nam 336-792, Republic of Korea
Abstract:The development is presented of a model of the thermodynamic functions of enthalpy, entropy and Gibbs energy for the elements carbon and hydrogen in coke crystallites. It is applicable to varying degrees of graphitization, described by the crystallite length La and the crystallite height Lc. The model parameters are derived from known properties such as bond enthalpies and entropies of formation. Good agreement has been obtained between the predicted thermal dehydrogenation of petroleum cokes and experimental data. The removal of hydrogen from idealized coke crystallites is predicted to occur mostly between 1100 and 1300 K. Agreement has also been found in the comparison of the predicted thermodynamic stability of coke relative to graphite, in a previous experimental study. This stability has been determined as at ≈900 J g?1 at temperatures between 950 and 1250 K and for La = 10 nm. The current predictive capacity of the present model is valid for temperatures up to 2500 K.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号