首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的中国第二次冰川编目半自动化更新
作者姓名:王世豪  柯长青  陈军
作者单位:1. 南京大学地理与海洋科学学院;2. 安徽建筑大学环境与能源工程学院
摘    要:中国第二次冰川编目的部分数据用第一次冰川编目替代,这些数据集中分布在藏东南地区。该地区地形陡峭、气候恶劣,常年多云层覆盖,无法获取有效的光学影像,缺乏系统性的冰川调查。针对传统阈值分割方法受噪声影响大、标准Unet计算量大导致运行缓慢等问题,对Unet模型进行压缩,通过修改样本尺寸、卷积核数量和优化器等模型参数,提升模型训练效率以及冰川提取精度。利用冰川的极化特性和地形特征,选用45景ENVISAT ASAR影像和NASA DEM,基于Unet及其压缩网络进行深度学习,参考光学影像和其它辅助数据对误分和漏分的冰川逐个进行人工目视判读,完成了未更新编目的冰川边界提取及修正,并对属性进行了更新。结果表明:基于SAR影像和地形特征的深度学习可以有效识别云层覆盖区域的冰川。在第二次冰川编目未完成的地区,共有冰川8 374条,总面积5 622.65±303.58 km2,误差占总冰川面积的5.4%,整体呈退缩状态,冰川碎片化现象居多。该数据集更新了中国第二次冰川编目中的替代数据,可为探讨藏东南冰川变化和物质平衡等相关研究提供可靠的数据支撑。

关 键 词:深度学习  Unet  ENVISAT ASAR  冰川识别  第二次冰川编目更新
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号