首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进循环生成对抗网络实现红外图像生成
引用本文:易星,潘昊,赵怀慈,刘鹏飞,杨斌. 基于改进循环生成对抗网络实现红外图像生成[J]. 电子测量技术, 2023, 46(18): 171-178
作者姓名:易星  潘昊  赵怀慈  刘鹏飞  杨斌
作者单位:1.沈阳化工大学信息工程学院 沈阳 110142; 2.中国科学院光电信息处理重点实验室 沈阳 110016; 3.中国科学院沈阳自动化研究所 沈阳 110016; 4.中国科学院机器人与智能制造创新研究院 沈阳 110169
基金项目:中国国家装备发展部重点预研基金(41401040105)项目资助
摘    要:针对目前已有的可见光图像生成红外图像的算法不能感知图像的弱纹理区域而导致生成的图像细节信息不突出、图像质量低的问题,本文提出了一种适用于图像生成任务的改进循环生成对抗网络(CycleGAN)结构。首先,利用特征提取能力更强的残差网络构建CycleGAN的生成器网络结构,使图像特征可以充分被提取,解决图像因特征提取不充分导致图像质量低下的问题;其次,在生成器的网络结构中引入了通道注意力机制和空间注意力机制,利用注意力机制对图像感知能力较差的区域进行权重处理,解决图像纹理细节丢失的问题。在OSU数据集上,本文所提出的方法相较于CycleGAN方法在峰值信噪比(PSNR)以及结构相似性(SSIM)指标上分别提高了7.1%和10.9%,在Flir数据集上的PSNR和SSIM分别提高了4.0%和6.7%。经过多个数据集上的实验结果证明,本文改进的方法能够突出图像生成任务中的细节特征信息,并且能有效地提升图像生成的质量。

关 键 词:循环生成对抗网络  红外图像生成  通道注意力  空间注意力  残差网络

Based on improved cycle generative adversarial network for infrared image generation
Yi Xing,Pan Hao,Zhao Huaici,Liu Pengfei,Yang Bin. Based on improved cycle generative adversarial network for infrared image generation[J]. Electronic Measurement Technology, 2023, 46(18): 171-178
Authors:Yi Xing  Pan Hao  Zhao Huaici  Liu Pengfei  Yang Bin
Abstract:To address the problem that the existing algorithms for generating infrared images from visible images cannot perceive the weak texture regions of the images, which leads to the low quality of the generated image details, this paper proposes an improved Cycle Generation Adversarial Network (CycleGAN) for the image generation task. structure for image generation tasks. Firstly, the generator network structure of the cycle generation adversarial network is constructed by using the residual network with stronger feature extraction ability, so that the image features can be fully extracted and the problem of low image quality caused by insufficient feature extraction can be solved; secondly, the channel attention mechanism and spatial attention mechanism are introduced in the generator network structure, and the regions with poor image perception are weighted by the attention mechanism to solve the problem of loss of image texture details. processing to solve the problem of image texture detail loss. On the OSU dataset, the proposed method improves the Peak Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM) metrics by 7.1% and 10.9%, respectively, compared with the cyclic generative adversarial network method on the Flir dataset. PSNR and SSIM improved by 4.0% and 6.7%, respectively, on the Flir dataset. The experimental results on several datasets demonstrate that the improved method in this paper can highlight the detailed feature information in the image generation task and can effectively improve the quality of image generation.
Keywords:
点击此处可从《电子测量技术》浏览原始摘要信息
点击此处可从《电子测量技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号