首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of plastic side flow on surface roughness in micro-turning process
Authors:Kai Liu  Shreyes N. Melkote  
Affiliation:aThe George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0406, USA
Abstract:Kinematic roughness-based surface finish prediction is known to often under-predict the measured surface roughness in turning process, especially at small (micron level) feed rates. It has also been observed that the surface roughness in micro-turning decreases with feed, reaches a minimum, and then increases with further reduction in feed. This paper presents a model for predicting the surface roughness in micro-turning of Al5083-H116 alloy that takes into account the effects of plastic side flow, tool geometry, and process parameters. The model combines these effects with more accurate estimation of the average flow stress of Al5083-H116 at micron scale of deformation with the help of a previously reported strain gradient-based finite element model. The surface roughness model is evaluated through a series of micro-turning experiments. The results show that the model can predict the surface roughness in micro-turning quite well. It is shown that the commonly observed discrepancy between the theoretical and measured surface roughness in micro-turning is mainly due to surface roughening caused by plastic side flow. Further, it is shown that the increase in roughness at low feed can be attributed to the increased side flow caused by strain gradient-induced strengthening of the material directly ahead of the tool.
Keywords:Surface roughness   Plastic side flow   Micro-cutting   Strain gradient strengthening
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号