首页 | 本学科首页   官方微博 | 高级检索  
     

基于Thevenin模型和自适应卡尔曼的SOC估算研究
引用本文:李欢,王顺利,邹传云,李建超,谢伟. 基于Thevenin模型和自适应卡尔曼的SOC估算研究[J]. 自动化仪表, 2021, 0(1): 46-51
作者姓名:李欢  王顺利  邹传云  李建超  谢伟
作者单位:西南科技大学信息工程学院;绵阳市产品质量监督检验所(国家电器安全质量监督检验中心);四川华泰电气股份有限公司
基金项目:国家自然科学基金资助项目(61801407);四川省科技厅重点研发基金资助项目(2018GZ0390、2019YFG0427);四川省教育厅科研基金资助项目(17ZB0453);西南科技大学素质类教改(青年发展研究)专项基金资助项目(18xnsu12)。
摘    要:精确的荷电状态(SOC)值在电池的应用开发中具有重要的意义.选择合适的滤波算法是精确估算的前提.由于扩展卡尔曼滤波(EKF)中噪声的给定值与实际工况下噪声的统计特性不符,导致估算精度低.为提高SOC估算精度,构建能准确反映锂电池工作特性的Thevenin电路模型.在此基础上,构建状态方程和观测方程,提出自适应卡尔曼滤波...

关 键 词:Thevenin模型  锂离子电池  参数辨识  混合动力脉冲能力特性  自适应卡尔曼滤波  荷电状态

Research on SOC Estimation Based on Thevenin Model and Adaptive Kalman
LI Huan,WANG Shunli,ZOU Chuanyun,LI Jianchao,XIE Wei. Research on SOC Estimation Based on Thevenin Model and Adaptive Kalman[J]. Process Automation Instrumentation, 2021, 0(1): 46-51
Authors:LI Huan  WANG Shunli  ZOU Chuanyun  LI Jianchao  XIE Wei
Affiliation:(College of Information Technology,Southwest Univejrsity of Science and Technology,Mianyang 621010,China;Mianyang Product Quality Supervision and Inspection Institute,National Electrical Safety and Quality Supervision and Inspection Center,Mianyang 621010,China;Sichuan Huatai Electric Co.,Ltd.,Suining 629000,China)
Abstract:Accurate state of charge(SOC)value is of great significance in the application development of batteries.It is the premise of accurate estimation for choosing the appropriate filtering algorithm.Since the given value of noise in extended Kalman(EKF)does not match the statistical characteristics of noise under actual working conditions,the estimation is not accurate enough.To improve the accuracy of SOC estimation,a Thevenin circuit model that accurately reflects the operating characteristics of the lithium battery is constructed.Based on the construction of the state equation and the observation equation,an adaptive Kalman filter(AKF)algorithm is proposed.The hybrid pulse power characterization(HPPC)experiment is used to identify the model parameters.The MATLAB/Simulink modeling and simulation are used to analyze the accuracy of SOC estimation of lithium batteries under constant current discharge and dynamic conditions.Experiments show that Thevenin model can well characterize the working characteristics of lithium batteries and can better estimate SOC.The maximum error under parameter identification,constant current discharge and dynamic conditions is controlled within 0.4%,0.2%,and 0.1% respectively.It is verified for the superiority of AKF to SOC estimation of lithium battery.
Keywords:Thevenin model  Lithium ion battery  Parameter identification  Hybrid pulse power characterization(HPPC)  Adaptive kalman filtering(AKF)  State of charge(SOC)
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号