首页 | 本学科首页   官方微博 | 高级检索  
     

混合动力汽车经济型巡航的车速规划策略
引用本文:鞠飞,庄伟超,王良模,刘经兴,王群. 混合动力汽车经济型巡航的车速规划策略[J]. 浙江大学学报(工学版), 2021, 55(8): 1538-1547. DOI: 10.3785/j.issn.1008-973X.2021.08.015
作者姓名:鞠飞  庄伟超  王良模  刘经兴  王群
作者单位:1. 南京理工大学 机械工程学院,江苏 南京 2100942. 东南大学 机械工程学院,江苏 南京 211189
基金项目:国家自然科学基金青年科学基金资助项目(51805081)
摘    要:选取功率分流式混合动力汽车为对象,以燃油消耗最小为目标开展巡航场景下的经济车速规划研究. 结合车辆动能管理与等效燃油最小化策略(ECMS),提出增强型等效燃油最小化策略(R-ECMS). 运用极小值原理推导油电等效系数,建立动能与电能间的等效关系;结合电能与燃油之间的等效关系,将车辆动能变化和电能消耗统一转化成燃油消耗. 为了兼顾电池SOC平衡以及车辆通行速度,采取非支配排序遗传算法优化R-ECMS权重系数中的参数. 仿真结果表明,与传统能量管理策略ECMS相比,R-ECMS可以降低8.06%的燃油消耗. 与采用最优算法的动态规划策略相比,R-ECMS能在实现次优的优化效果的同时大幅降低计算时间. 同时,与ECMS相比,R-ECMS在其他仿真场景下能实现6.94%的节油率,具有较好的泛化性能和应用前景.

关 键 词:汽车工程  瞬时控制策略  等效燃油消耗  混合动力汽车  动态规划  遗传算法  

Velocity planning strategy for economic cruise of hybrid electric vehicles
Fei JU,Wei-chao ZHUANG,Liang-mo WANG,Jing-xing LIU,Qun WANG. Velocity planning strategy for economic cruise of hybrid electric vehicles[J]. Journal of Zhejiang University(Engineering Science), 2021, 55(8): 1538-1547. DOI: 10.3785/j.issn.1008-973X.2021.08.015
Authors:Fei JU  Wei-chao ZHUANG  Liang-mo WANG  Jing-xing LIU  Qun WANG
Abstract:Economic velocity planning in cruise scenario was studied for the power-split hybrid electric vehicle aiming at minimizing the fuel consumption. A reinforced equivalent consumption minimization strategy (R-ECMS) was proposed based on kinetic energy management and equivalent consumption minimization strategy (ECMS). The equivalent coefficient between fuel and electric energy was derived using minimum principle. Meanwhile, the equivalent relationship between kinetic energy and electric energy was established. The vehicle kinetic change and electric consumption were unified into fuel consumption, combined with the equivalent relationship between fuel and electric energy. The non-dominated sorting genetic algorithm was adopted to optimize the parameters in the weight coefficients of the proposed strategy, to ensure battery SOC balance and meet vehicle travel time at the same time. Simulation results demonstrate that R-ECMS can reduce fuel consumption by 8.06% compared with the traditional control strategy ECMS. The proposed R-ECMS not only achieves sub-optimal optimization performance, but also sharply reduces the computing burden, as compared to dynamic programming. Moreover, its performance is robust to various driving scenarios. The simulation using another road profile in reality shows that the R-ECMS can achieve a 6.94% reduction in the corresponding fuel consumption compared to the ECMS. Thus, the R-ECMS has a good application prospect.
Keywords:vehicle engineering  instantaneous control strategy  equivalent fuel consumption  hybrid electric vehicle  dynamic programming  genetic algorithm  
本文献已被 CNKI 等数据库收录!
点击此处可从《浙江大学学报(工学版)》浏览原始摘要信息
点击此处可从《浙江大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号