首页 | 本学科首页   官方微博 | 高级检索  
     


Kernel methods for learning languages
Authors:Leonid Kontorovich  Corinna Cortes  Mehryar Mohri
Affiliation:1. Department of Mathematics, Weizmann Institute of Science, Rehovot, 76100, Israel;2. Google Research, 76 Ninth Avenue, New York, NY 10011, United States;3. Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012, United States
Abstract:This paper studies a novel paradigm for learning formal languages from positive and negative examples which consists of mapping strings to an appropriate high-dimensional feature space and learning a separating hyperplane in that space. Such mappings can often be represented flexibly with string kernels, with the additional benefit of computational efficiency. The paradigm inspected can thus be viewed as that of using kernel methods for learning languages.
Keywords:Finite automata   Learning automata   Margin theory   Support vector machines   Kernels   Piecewise-testable languages
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号