首页 | 本学科首页   官方微博 | 高级检索  
     


Device performance of ferroelectric/correlated oxide heterostructures for non-volatile memory applications
Authors:Hoffman J  Hong X  Ahn C H
Affiliation:Department of Applied Physics and CRISP, Yale University, New Haven, CT 06511, USA. jason.hoffman@yale.edu
Abstract:Ferroelectric field effect devices offer the possibility of non-volatile data storage. Attempts to integrate perovskite ferroelectric materials with silicon semiconductors, however, have been largely unsuccessful in creating non-volatile, nondestructive read memory elements because of difficulties in controlling the ferroelectric/semiconductor interface. Correlated oxide systems have been explored as alternative channel materials to form all-perovskite field effect devices. We examine a non-volatile memory using an electric-field-induced metal-insulator transition in PbZr(0.2)Ti(0.8)O(3)/La(1 - x)Sr(x)MnO(3) (PZT/LSMO), PZT/La(1 - x)Ca(x)MnO(3) (PZT/LCMO) and PZT/La(1 - x)Sr(x)CoO(3) (PZT/LSCO) devices. The performance of these devices in the areas of switching time and retention are discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号