首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进粒子群优化算法和CRNN的多类SVM分类
引用本文:俞颖1,2,黄风华1,2,阮奇3. 基于改进粒子群优化算法和CRNN的多类SVM分类[J]. 延边大学学报(自然科学版), 2019, 0(3): 215-220
作者姓名:俞颖1  2  黄风华1  2  阮奇3
作者单位:( 1.阳光学院 空间数据挖掘与应用福建省高校工程研究中心; 2.阳光学院 人工智能学院; 3.阳光学院 教师发展中心: 福州 福建 350015 )
摘    要:为了提高支持向量机(SVM)在多类分类中的分类效果,提出了一种基于改进粒子群优化(IMPSO)算法和协作式递归神经网络(CRNN)的多类SVM分类方法(IMPSO_CRNN_SVM算法).首先引入自适应惯性权重及自适应粒子变异,以此改进粒子群优化算法(PSO)在优化SVM参数过程中存在的容易陷入局部最优和早熟等问题; 然后基于多类SVM设计一个CRNN,并利用随机分配的训练集对该网络进行训练并构建最终决策函数,从而实现多类数据的“一次性”分类.最后利用3种数据集和实际应用对IMPSO_CRNN_SVM算法进行验证,结果表明IMPSO_CRNN_SVM算法的分类精度优于未进行参数优化的传统SVM算法、基本PSO 进行SVM参数优化的算法和未进行PSO参数优化的基于CRNN的多类支持向量机算法,因此IMPSO_CRNN_SVM算法具有一定的实用性.

关 键 词:粒子群优化算法  协作式递归神经网络  支持向量机  多类分类

Classification of multi-class support vector machines based on improved particle swarm optimization and CRNN
YU Ying1,' target="_blank" rel="external">2,HUANG Fenghua1,' target="_blank" rel="external">2,RUAN Qi3. Classification of multi-class support vector machines based on improved particle swarm optimization and CRNN[J]. Journal of Yanbian University (Natural Science), 2019, 0(3): 215-220
Authors:YU Ying1,' target="  _blank"   rel="  external"  >2,HUANG Fenghua1,' target="  _blank"   rel="  external"  >2,RUAN Qi3
Affiliation:( 1.Spatial Data Mining and Application Research Center of Fujian Province, Yango University; 2.Artificial Intelligence College, Yango University; 3.Teacher Development Centre, Yango University: Fuzhou 350015, China )
Abstract:Aiming at the factors that affect the application of support vector machine(SVM)in multi-class classification, a multi-class SVM classification method(IMPSO_CRNN_SVM algorithm)based on improved particle swarm optimization algorithm(IMPSO)and cooperative recurrent neural network(CRNN)was proposed. Firstly, adaptive inertia weight and adaptive particle variation were introduced to improve the problem of local optimization and prematurity of particle swarm optimization algorithm(PSO)in the process of optimizing SVM parameters. Then, based on multi-class SVM technology, a CRNN was designed. The randomly assigned training set was used to train the network to construct the final decision function, so as to realize the "one -step" classification of multi-class data. Finally, the IMPSO_CRNN_SVM algorithm is verified by different data sets and practical applications. The results show that the classification accuracy of IMPSO_CRNN_SVM algorithm is better than that of SVM algorithm without parameter optimization or traditional PSO parameter optimization and multi-class SVM based on CRNN without parameter optimization, and it has certain practicability.
Keywords:particle swarm optimization   cooperative recurrent neural network   support vector machine   multi-class classification
点击此处可从《延边大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《延边大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号