首页 | 本学科首页   官方微博 | 高级检索  
     


Design and Optimization of On-Chip Interconnects Using Wave-Pipelined Multiplexed Routing
Authors:Joshi  AJ Lopez  GG Davis  JA
Affiliation:Massachusetts Inst. of Technol., Cambridge;
Abstract:Every new VLSI technology generation has resulted in interconnects increasingly limiting the performance, area, and power dissipation of new processors. Subsequently, it is necessary to devise efficient interconnect design techniques to reduce the impact of VLSI interconnects on overall system design. New optimizations of a wave-pipelined multiplexed (WPM) interconnect routing circuit are described in this paper. These WPM circuits can be used with current interconnect repeater circuits to further reduce interconnect delay, interconnect area, transistor area, and/or power dissipation. For example, new area constrained WPM circuit optimizations illustrate that the interconnect circuit power can be reduced by 26% or the interconnect performance can be improved by 74%. Moreover, in both these cases, because a significant number of repeaters are eliminated, the transistor area can reduce by 41% or 29%, respectively. Finally, the tolerance of WPM circuits to crosstalk noise, power supply noise, clock skew, and manufacturing variations is also presented. This study of tolerance levels defines the conditions under which the WPM circuit will function correctly, and it is shown in this paper for the first time that WPM circuits are robust enough to operate with variability that can be encountered in deep submicrometer technologies.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号