首页 | 本学科首页   官方微博 | 高级检索  
     


Interfacial reaction behavior and bonding mechanism between liquid Sn and ZrO2 ceramic exposed in ultrasonic waves
Affiliation:1. State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China;2. Laboratory of Special Welding Technology of Shandong Province, Harbin Institute of Technology at Weihai, Weihai 264209, China;3. School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China;1. State Key Laboratory of Automotive Simulation and Control, Jilin University, PR China;2. Key Laboratory of Automobile Materials (Ministry of Education), School of Materials Science and Engineering, Jilin University, No. 5988 Renmin Street, Changchun 130022, PR China
Abstract:Ultrasound-assisted dipping of ZrO2 ceramics into molten Sn solder was performed to realize the low-temperature joining of ZrO2 ceramics in this study. Scanning electron microscopy with energy dispersive spectrometer, X-ray diffraction and X-ray photoelectron spectroscopy were employed to study the effects of ultrasonic vibration on the microstructure of Sn/ZrO2 interface, and to elucidate the joining mechanism between Sn coating layer and ZrO2 ceramic. Results showed that, after ultrasonically dipping in molten Sn for 1200 s, a pure Sn solder layer with a thickness of approximately 8–9 µm was coated on the ZrO2 surface. The Sn coating layer exhibited excellent metallurgic bonding with ZrO2 ceramic. A nano-sized ZrSnO4 ternary phase, which was beneficial to the smooth transition of the lattice from Sn solder to ZrO2 ceramic, was formed at the Sn/ZrO2 interface. The formation of ZrSnO4 interlayer was ascribed to the acoustic cavitation induced high-temperature reaction of Sn, O and ZrO2 at the molten Sn/ZrO2 ceramic interface. The tested average shear strength of ZrO2/Sn/ZrO2 joints was approximately 32 MPa, and the shearing failure mainly took place within the Sn solder layer.
Keywords:Pure Sn  Ultrasound-assisted dipping
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号