首页 | 本学科首页   官方微博 | 高级检索  
     

极端条件下基于改进深度森林的行星齿轮箱故障诊断方法
引用本文:李东东,蒋海涛,赵 耀,徐鹏涛,钱荣荣. 极端条件下基于改进深度森林的行星齿轮箱故障诊断方法[J]. 电力系统保护与控制, 2023, 51(11): 39-50
作者姓名:李东东  蒋海涛  赵 耀  徐鹏涛  钱荣荣
作者单位:1.上海电力大学电气工程学院,上海 200090;2.中国航发商用航空发动机有限责任公司,上海 200241
基金项目:国家自然科学基金项目资助(51977128);上海市自然科学基金项目资助(21ZR1425400);上海市青年科技英才扬帆计划(20YF1454300)
摘    要:齿轮箱是风电机组重要且易出现故障的设备,早期故障威胁系统运行安全。在极端条件中高效、准确的齿轮箱故障诊断对风电机组的安全稳定运行至关重要,因此提出了基于改进深度森林的行星齿轮箱故障诊断方法。为了实现不平衡小样本与强噪声的极端条件下行星齿轮箱故障的高效诊断,首先针对旋转机械振动数据样本较少与不平衡的情况,在Wasserstein生成对抗网络中引入梯度惩罚,生成样本补充原始数据集。然后利用多粒度扫描处理振动信号数据点之间的联系,增强数据中的故障特征。最后在级联森林内部引入新的基学习器并运用量子粒子群算法优化参数,获得具有高诊断精度的模型结构进行故障分类,输出诊断结果。经与其他智能诊断方法在多场景下进行的对比实验,证实了所提方法在极端条件下的分类效果较好,能有效提高齿轮箱故障诊断的准确性。

关 键 词:行星齿轮箱;故障诊断;深度森林;极端条件;生成对抗网络;不平衡小样本
收稿时间:2022-09-07
修稿时间:2022-11-25

Fault diagnosis technology of a planetary gearbox based on an improved deep forest algorithmunder extreme conditions
LI Dongdong,JIANG Haitao,ZHAO Yao,XU Pengtao,QIAN Rongrong. Fault diagnosis technology of a planetary gearbox based on an improved deep forest algorithmunder extreme conditions[J]. Power System Protection and Control, 2023, 51(11): 39-50
Authors:LI Dongdong  JIANG Haitao  ZHAO Yao  XU Pengtao  QIAN Rongrong
Affiliation:1. College of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; 2. AECC Commercial Aircraft Engine Co., Ltd., Shanghai 200241, China
Abstract:A gearbox is an important but fault-prone part of wind turbine. Early faults threaten the operational safety of the system. Efficient and accurate gearbox fault diagnosis in extreme conditions is very important for safe and stable operation, thus, a planetary gearbox fault diagnosis algorithm based on an improved deep forest is proposed. To realize the efficient diagnosis of planetary gear box faults in extreme conditions of unbalanced small samples and strong noise, this paper first introduces gradient punishment in a Wasserstein generation countermeasure network to generate samples to supplement the original data set in view of the small and unbalanced vibration data samples of rotating machinery. Second, multi granularity scanning is used to deal with the relationship between vibration signal data points to enhance the fault characteristics in the data. Finally, a new base learner is introduced into the cascade forest and the quantum particle swarm optimization algorithm is used to optimize the key parameters to obtain a model structure with high diagnostic accuracy for fault classification and to output diagnostic results. Compared with other intelligent diagnosis methods in multiple scenarios, it is proved that the proposed method has good classification effect in extreme conditions, and can effectively improve the accuracy of gearbox fault diagnosis.
Keywords:planetary gear box   fault diagnosis   deep forest   extreme conditions   generating a confrontation network   unbalanced small sample
点击此处可从《电力系统保护与控制》浏览原始摘要信息
点击此处可从《电力系统保护与控制》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号