首页 | 本学科首页   官方微博 | 高级检索  
     


Porous silicon pillar and bilayer structure as a nucleation center for the formation of aligned vanadium pentoxide nanorods
Affiliation:1. Materials Science Centre, Indian Institute of Technology, Kharagpur 721302, India;2. Solid State Chemistry Section, Applied Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
Abstract:Porous silicon single layer (PSM), bilayer (PSB) and pillar (PSP) structures have been evaluated as nucleation centers for vanadium pentoxide (V2O5) crystals. Deposition of vanadium precursor over different substrates (drop casting technique), followed by annealing treatment under Ar-H2 (5% H2) atmosphere, induced crystallization of vanadium oxide. With respect to c-Si/SiO2 substrate, V2O5 nanorods with relatively large aspect ratio were formed over and within PSP structures. On the other hand, pores in PSM and PSB were found to be filled with relatively smaller crystals. Additionally, PSB provided a nucleation substrate capable to align the nanocrystals in a preferential orientation, while V2O5 crystals grown on PSP were found to be randomly aligned around the nanoporous pillar microstructure. Nanorods and nanocrystals were identified as V2O5 by temperature-controlled XRD measurements and evidence of their crystalline nature was observed via transmission electron microscopy. A careful analysis of electronic microscopy images allows the identification of the facets composing the ends of the crystals and its corresponding surface free energy has been evaluated employing the Wulff theorem. Such high surface area composite structures have potential applications as cathode material in Lithium-ion batteries.
Keywords:Porous silicon  Vanadium pentoxide  Nanorods  Crystallization  Nanostructures
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号