首页 | 本学科首页   官方微博 | 高级检索  
     


Structural,magnetic and magnetocaloric properties of nanostructured Pr0.5Sr0.5MnO3 manganite synthesized by mechanical alloying
Affiliation:1. Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Université de Sfax, B. P. 1171, 3018 Sfax, Tunisia;2. Institut Néel, B.P. 166, 38042 Grenoble Cedex 9, France;3. Laboratoire de chimie inorganique, Ur-1-Es-73, Faculté des Sciences de Sfax, Université de Sfax, B. P. 1171, 3018 Sfax, Tunisia;1. Laboratoire des technologies des systèmes smart LT2S, Route de Tunis, Km 9, Sfax. BP 275, Sakiet Ezzit, 3021 Sfax, Tunisia;2. Centre de Recherches en Numérique de Sfax, Cité El Ons, Route de Tunis, Km 9, Sfax. BP 275, Sakiet Ezzit, 3021 Sfax, Tunisia;1. Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;2. Department of Physics, University of Göttingen, Tammanstrasse 1-37077, Göttingen, Germany;3. High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China;1. Laboratoire de Physique Appliquée, Faculté des Sciences de Sfax, BP 1171, Université de Sfax, 3000, Tunisia;2. Laboratoire des Sciences des Matériaux et de l’Environnement, Faculté des Sciences de Sfax, BP 1171, Université de Sfax, 3000, Tunisia;3. I3N and Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal;1. Sfax University, Faculty of Sciences of Sfax, B.P. 1171, 3000, Tunisia;2. The University of Jordan, Amman, Jordan;3. Institut Néel, CNRS et Université Joseph Fourier, B. P. 166, 38042, Grenoble, France;4. Sfax University, National School of Engineers, B.P.W 3038, Tunisia;1. Laboratory of Material Condensed and Nanoscience, Faculty of Sciences, University of Monastir, 5019 Monastir, Tunisia;2. Institut Néel, CNRS et Université Joseph Fourier, B. P. 166, 38042 Grenoble, France;3. College of Science in Zulfi, Almajmaah University, Box 66, Saudi Arabia
Abstract:Nanostructure Pr0.5Sr0.5MnO3 compounds were elaborated by mechanical milling in a planetary high energy ball mill at various milling times followed by high temperature sintering under air at 1400 °C for 20 h. The phase structure, the morphology, the magnetic and magnetocaloric properties of the powders were characterized by X-ray diffractometry, scanning electron microscopy and a vibrating sample magnetometer. Rietveld refinement of the X-ray diffraction patterns shows that all specimens crystallize in the tetragonal system with I4/mcm space group. Increasing the milling time up to 16 h, the average crystallites size decreases to the nanoscale (~36 nm). During the intermediate stage of milling, significant changes occur in the morphology of the powder particles, due to the severe plastic deformation. Significant refinement in particle size was found evident at the final stage of milling (~2 µm). From magnetic measurements, it was found that all samples present two magnetic transitions as a function of temperature. The Curie temperature TC decreases with increasing milling time. Moreover, it was revealed that the antiferromagnetic domains fractions highly dependent on crystallites sizes. A large magnetocaloric effect and an important value of the relative cooling power around Neel temperature was observed in all samples. These characteristics may be related to the first-ordered nature of this transition. Moreover, the magnetic entropy change and the relative cooling power were increased with decreasing crystallites sizes.
Keywords:Perovskite manganites  High-energy ball milling  Magnetic properties  Magnetocaloric effect
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号