首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络集成模型在高压断路器机械故障诊断中的应用
作者姓名:赵科  杨景刚  马速良  王昱皓  武建文  梁传涛
作者单位:国网江苏省电力公司电力科学研究院;北京航空航天大学自动化科学与电气工程学院;山东泰开高压开关有限公司
摘    要:高压断路器健康情况严重影响着电网的安全、稳定运行。文中提出一种基于高压断路器合闸过程振动信号时频特征下的集成学习神经网络模型,满足高压断路器故障情况高精度诊断的要求。首先,分析高压断路器在多测量位置下合闸振动信号特征,并在时、频两域定义合闸过程多测量位置振动信号的广义能量和小波能量比进行特征空间描述;然后,设计基于集成学习思想的神经网络算法划分特征空间,诊断故障类别;最后,通过实验数据分析和多种诊断方法的对比验证文中所述的诊断过程合理、诊断结果精确,有利于高压断路器故障排查。

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号