首页 | 本学科首页   官方微博 | 高级检索  
     


Biological variability in lignification of maize: Expression of the brown midrib bm2 mutation
Authors:B Chabbert  M T Tollier  B Monties  Y Barrire  O Argillier
Affiliation:B Chabbert,M T Tollier,B Monties,Y Barrière,O Argillier
Abstract:The cell wall phenolic components in the internodes of three maize genotypes, namely normal, bm2 and bm3 maize, were determined. The bm2 and bm3 brown midrib mutations lowered the lignin content of the bottom, middle and top internodes to a similar extent. However, unlike bm3, the bm2 trait did not induce a sharp reduction of the level of ester-bound p-coumaric acid in maize internodes. The other main alkali labile phenolic acid, ferulic acid, reached similar levels in the three genotypes. The main difference between bm2 and bm3 mutations occurred in the alkyl aryl ether linked structures of the lignin component. In contrast to bm3 lignins, which are characterised by a low syringyl content, the bm2 lignin had a lower content of guaiacyl units than lignin of normal maize internode. Consequently, the syringyl/guaiacyl molar ratio of bm2 lignin gave higher values (2.7–3.2) than those from either normal (0.9–1.5) or bm3 lignins (0.3). The alkali solubility of lignin was also compared between the three genotypes. Incorporation of the bm3 trait in maize led to a high recovery of alkali soluble lignin whereas the bm2 lignin had a similar solubility to the normal one in 2 M NaOH. The monomeric composition of the alkali soluble lignins was consistent with the non-condensed structures of the in-situ polymer. Although the bm3 and bm2 mutations had different effects on lignification, the modification of the cell wall phenolic level was also found in the bm2 maize stem as previously studied.
Keywords:Zea mays  brown midrib  bm3  bm2  syringyl  thioacidolysis  nitrobenzene oxidation  alkali lignin
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号