首页 | 本学科首页   官方微博 | 高级检索  
     

基于回归神经网络的非线性时变系统辨识
引用本文:邹高峰,王正欧. 基于回归神经网络的非线性时变系统辨识[J]. 控制与决策, 2002, 17(5): 517-521
作者姓名:邹高峰  王正欧
作者单位:天津大学,系统工程研究所,天津,300072
基金项目:国家自然科学基金项目 (6 9774 0 33)
摘    要:为克服基于前馈神经网络的非线性系统辨识算法存在需预先估计系统输入输出滞后阶数的缺陷,提出一种基于回归神经网络的非线性时变系统的辨识算法,针对现有的回归网络学习算法大多采用梯度算法,收敛速度缓慢问题,提出一种具有快速收敛性的扩展卡尔曼滤波学习算法,大大提高了学习收敛速度,并推导了一种基于单个神经元的局部化算法,减少了计算量,仿真实例证明,所提出的算法是有效的。

关 键 词:回归神经网络 非线性时变系统 系统辨识 扩展卡尔曼滤波 人工神经网络
文章编号:1001-0920(2002)05-0517-05
修稿时间:2001-06-22

Identification of nonlinear time varying systems based on recurrent neural networks
ZOU Gao feng,WANG Zheng ou. Identification of nonlinear time varying systems based on recurrent neural networks[J]. Control and Decision, 2002, 17(5): 517-521
Authors:ZOU Gao feng  WANG Zheng ou
Abstract:A common drawback of the existing identification algorithms based on feedforward neural networks for nonlinear time varying systems is that the input and output delay orders of a system must be estimated in advance. A new identification approach based on recurrent neural networks is presented toovercomethisdrawback.The learning algorithms based on extended Kalman filter are derived. Comparedwiththetrainingalgorithmsofmost existing recurrent networks based on the gradient approach, the proposed algorithms largelyimprovethelearningconvergence,and the local algorithm reduces thecomputationcost.The simulation results demonstrate the effectiveness of the proposed approach.
Keywords:system identification  recurrent neural networks  nonlinear time varying system  extended Kalman filter
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号