首页 | 本学科首页   官方微博 | 高级检索  
     

露天矿边坡监测中的小波滤噪与BPANN预测
引用本文:杨凤芸,徐茂林,郭兆鹏. 露天矿边坡监测中的小波滤噪与BPANN预测[J]. 矿冶工程, 2013, 33(6): 1-5. DOI: 10.3969/j.issn.0253-6099.2013.06.001
作者姓名:杨凤芸  徐茂林  郭兆鹏
作者单位:辽宁科技大学 土木工程学院, 辽宁 鞍山 114051
基金项目:国家自然科学基金项目基金(41104104)
摘    要:针对边坡变形量预测难的问题, 将小波分析与BP神经网络预测相结合, 采用小波变换对边坡变形监测数据进行信噪分离, 进而消除观测误差, 通过BP神经网络预测模型BPANN对处理后数据进行再处理, 对边坡变形量以及变形趋势进行预测。进而提出了一种基于小波变换和BPANN模型对露天矿边坡变形监测数据进行处理分析的方法, 并在鞍山某露天矿进行了实际应用。实例结果表明: 利用小波去噪与BPANN模型预测的监测点精度达到3 mm, 满足二等变形监测的要求, 数据处理简便, 在露天矿边坡变形监测数据的消噪与预测中具有实际应用价值。

关 键 词:露天矿  小波变换  BPANN(反传人工神经网络)  边坡变形  变形预测  精度分析  
收稿时间:2014-12-17

Wavelet Denoising and BPANN Forecast for Monitoring Slope Deformation in Open Pit
YANG Feng-yun,XU Mao-lin,GUO Zhao-peng. Wavelet Denoising and BPANN Forecast for Monitoring Slope Deformation in Open Pit[J]. Mining and Metallurgical Engineering, 2013, 33(6): 1-5. DOI: 10.3969/j.issn.0253-6099.2013.06.001
Authors:YANG Feng-yun  XU Mao-lin  GUO Zhao-peng
Affiliation:School of Civil Engineering, University of Science and Technology Liaoning, Anshan 114051, Liaoning, China
Abstract:In view of difficulty in slope deformation forecast, a data analysis method was put forward based on the combination of wavelet analysis and BP artificial neural network forecast. Wavelet transform was firstly adopted to do signal-noise separation for slope deformation monitoring data so as to eliminate observation error. Then, BP artificial neural network model (BPANN) was used in post-processing. The slope deformation in open-pit mine and its trend were therefore forecasted. The practical application of this method in an Anshan open-pit mine indicates that wavelet denoising combined with BPANN model can predicts the monitoring point with the precision of 3 mm, up to the requirement for the second-class deformation monitoring. It is of practical value to apply such method into denoising of monitoring data and predication of open-pit slope deformation, due to simplicity of data processing.
Keywords:open-pit mine  wavelet transform  BPANN(back propagation artificial neural network)  slope deformation  deformation forecast  precision analysis  
点击此处可从《矿冶工程》浏览原始摘要信息
点击此处可从《矿冶工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号