首页 | 本学科首页   官方微博 | 高级检索  
     


Implementation of Artificial Neural Network-Based Tracking Controller for High-Performance Stepper Motor Drives
Authors:Rubaai   A. Castro-Sitiriche   M.J. Garuba   M. Burge   L.
Affiliation:Electr. & Comput. Eng. Dept., Howard Univ., Washington, DC;
Abstract:Two distinct multilayer perception neural networks (NNs) are implemented via laboratory experiment to simultaneously identify and adaptively control the trajectory tracking of a hybrid step motor assumed to operate in a high-performance drives environment. That is, a neural network identifier (NNI) which captures the nonlinear dynamics of the stepper motor drive system (SMDS) over any arbitrary time interval in its range of operation, and a neural network controller (NNC) to provide the necessary control actions as to achieve trajectory tracking of the rotor speed. The exact form of the control law is unknown, and must be estimated by the NNC. Consequently, the NNC is constructed as a nonlinear unknown function depending on the current state of the drive system supplies by the NNI and the reference trajectory we wish the outputs to follow. The two NNs are online trained using dynamic back-propagation algorithm. The composite structure is used as a speed controller for the SMDS. Performance of the composite controller is evaluated through a laboratory experiment. Experimental results show the effectiveness of this approach, and demonstrate the usefulness of the proposed controller in high-performance drives
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号