首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of hyperglycemia on brain cell membrane function and energy metabolism during hypoxia-ischemia in newborn piglets
Authors:YS Chang  WS Park  M Lee  KS Kim  SM Shin  JH Choi
Affiliation:Department of Pediatrics, Samsung Medical Center, Sung Kyun Kwan University College of Medicine, 50 Ilwon-dong, Kangnam-ku, Seoul 130-230, South Korea.
Abstract:The purpose of this study was to test the hypothesis that hyperglycemia ameliorates changes in brain cell membrane function and preserves cerebral high energy phosphates during hypoxia-ischemia in newborn piglets. A total of 42 ventilated piglets were divided into 4 groups, normoglycemic/normoxic(group 1, n=9), hyperglycemic/normoxic(group 2, n=8), normoglycemic/hypoxic-ischemic(group 3, n=13) and hyperglycemic/hypoxic-ischemic(group 4, n=12) group. Cerebral hypoxia-ischemia was induced by occlusion of bilateral common carotid arteries and simultaneous breathing with 8% oxygen for 30 min. Hyperglycemia (blood glucose 350-400 mg/dl) was maintained for 90 min before and throughout hypoxia-ischemia using modified glucose clamp technique. Changes in cytochrome aa3 were continuously monitored using near infrared spectroscopy. Blood and CSF glucose and lactate were monitored. Na+, K+-ATPase activity, lipid peroxidation products (conjugated dienes), tissue high energy phosphates (ATP and phosphocreatine) levels and brain glucose and lactate levels were determined biochemically in the cerebral cortex. During hypoxia-ischemia, glucose levels in blood and CSF were significantly elevated in hyperglycemic/hypoxic-ischemic group compared with normoglycemic/hypoxic-ischemic group, but lactate levels in blood and CSF were not different between two groups. At the end of hypoxia-ischemia of group 3 and 4, triangle up Cyt aa3, Na+, K+-ATPase activity, ATP and phosphocreatine values in brain were significantly decreased compared with normoxic groups 1 and 2, but were not different between groups 3 and 4. Levels of conjugated dienes and brain lactate were significantly increased in groups 3 and 4 compared with groups 1 and 2, and were significantly elevated in group 4 than in group 3 (0.30+/-0.11 vs. 0.09+/-0.02 micromol g-1 protein, 26.4+/-7.6 vs. 13.1+/-2.6 mmol kg-1, p<0.05). These findings suggest that hyperglycemia does not reduce the changes in brain cell membrane function and does not preserve cerebral high energy phosphates during hypoxia-ischemia in newborn piglets. We speculate that hyperglycemia may be harmful during hypoxia-ischemia due to increased levels of lipid peroxidation in newborn piglet.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号