首页 | 本学科首页   官方微博 | 高级检索  
     

射电望远镜主动反射面系统的控制
引用本文:李爱华,周国华,李国平,张勇,张振超. 射电望远镜主动反射面系统的控制[J]. 光学精密工程, 2016, 24(7): 1711-1718. DOI: 10.3788/OPE.20162407.1711
作者姓名:李爱华  周国华  李国平  张勇  张振超
作者单位:1. 中国科学院 国家天文台 南京天文光学技术研究所, 江苏 南京 210042;2. 中国科学院 南京天文光学技术研究所 天文光学技术重点实验室, 江苏 南京 210042;3. 中国科学院大学, 北京 100049
基金项目:国家自然科学基金资助项目(U1331204),国家重点基础研究发展计划(2015CB857100)
摘    要:针对新疆奇台110m射电望远镜主动反射面控制技术的要求,设计和研制了一种新型的位移促动器和位移控制系统,并采用双频激光干涉仪对多个位移促动器及其控制系统进行了全面检测。位移促动器采用了基于涡轮蜗杆加滚珠丝杆的高精度结构设计方案,控制器系统采用了ARM微处理器。最后选择S曲线加速控制方法,设计了主动反射面控制系统硬件平台和软件算法。基于双频激光干涉仪和光学隔振平台在恒温超洁净条件下进行了系列测试。结果表明:系统实现了行程范围为30mm,控制精度为5μm RMS的快速精密控制;在额定负载300kg,步长2mm,行程30mm范围内,实测结果平均值与理论值偏差为0.04%,标准偏差为3.67μm。最后,采用测量精度为0.25μm的激光传感器对4块四点支撑的四边形子面板进行了验证检测。结果显示:经多次迭代后主动反射面控制闭环系统的控制精度小于5μm RMS,远远优于3mm波段射电望远镜主动反射面控制的技术要求。

关 键 词:射电望远镜  主动反射面  S曲线加速控制算法  位移促动器  位移控制系统
收稿时间:2016-01-10

Control of active reflector system for radio telescope
LI Ai-hua,ZHOU Guo-hua,LI Guo-ping,ZHANG Yong,ZHANG Zhen-chao. Control of active reflector system for radio telescope[J]. Optics and Precision Engineering, 2016, 24(7): 1711-1718. DOI: 10.3788/OPE.20162407.1711
Authors:LI Ai-hua  ZHOU Guo-hua  LI Guo-ping  ZHANG Yong  ZHANG Zhen-chao
Affiliation:1. National Astronomical Observatories/Nanjing Institute of Astronomical Optics & Technology, Chinese Academy of Sciences, Nanjing 210042, China;2. Key Laboratory of Astronomical Optics & Technology, Nanjing Institute of Astronomical Optics & Technology, Chinese Academy of Sciences, Nanjing 210042, China;3. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:According to the control requirements of the active reflector surface in the 110 m radio telescope at QiTai(QTT) Xinjiang, a new displacement actuator and a new displacement control system were designed and manufactured and then their characteristics were tested by a dual-frequency laser interferometer in the micro-displacement laboratory. The displacement actuator was designed by a scheme of high precision worm and roller screw structures, and the displacement control system was based on a ARM micro-processor. Finally, the S curve acceleration control methods were used to design the hardware platform and software algorithm for the active reflection surface of the control system. The test experiments were performed based on the laser metrology system on an active reflector close-loop antenna prototype for large radio telescope. Experimental results indicate that it achieves a 30 mm working stroke and 5 μm RMS motion resolution. The accuracy (standard deviation) is 3.67 μm, and the error between the determined and theoretical values is 0.04% when the rated load is 300 kg, the step is 2 mm and the stroke is 30mm. Furthermore, the active reflector integrated system was tested by the laser sensors with the accuracy of 0.25 μm RMS on 4-panel radio telescope prototype, the measurement results show that the integrated precision of the active reflector closed-loop control system is less than 5 μm RMS, and well satisfies the technical requirements of active reflector control system of the QTT radio telescope in 3 mm wavelength.
Keywords:radio telescope  active reflector  S curve acceleration control algorithm  displacement actuator  displacement control system
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《光学精密工程》浏览原始摘要信息
点击此处可从《光学精密工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号