首页 | 本学科首页   官方微博 | 高级检索  
     

标准神经网络模型及其应用
引用本文:颜钢锋,张森林,刘妹琴. 标准神经网络模型及其应用[J]. 浙江大学学报(工学版), 2004, 38(3): 297-301
作者姓名:颜钢锋  张森林  刘妹琴
作者单位:颜钢锋(浙江大学,电气工程学院,浙江,杭州,310027) 
张森林(浙江大学,电气工程学院,浙江,杭州,310027) 
刘妹琴(浙江大学,电气工程学院,浙江,杭州,310027)
摘    要:提出一种新的神经网络模型--标准神经网络模型(SNNM),它由线性动力学系统和有界静态非线性算子连接而成.SNNM表示为线性微分包含(LDI)形式,可以方便地利用线性矩阵不等式(LMI)方法来分析其稳定性和其他性能.利用不同的Lyapunov函数和S方法推导出基于LMI的连续SNNM和离散SNNM的稳定性定理.实例表明SNNM可应用于递归神经网络的稳定性分析以及神经网络控制系统的综合和分析.

关 键 词:标准神经网络模型  离散时间  线性矩阵不等式  线性微分包含  非线性控制
文章编号:1008-973X(2004)03-0297-05
修稿时间:2003-03-23

Standard neural network model and its application
YAN Gang-feng,ZHANG Sen-lin,LIU Mei-qin. Standard neural network model and its application[J]. Journal of Zhejiang University(Engineering Science), 2004, 38(3): 297-301
Authors:YAN Gang-feng  ZHANG Sen-lin  LIU Mei-qin
Abstract:The novel neural network model, named standard neural network model (SNNM), presented in this paper, is the interconnection of a linear dynamic system and a bounded static nonlinear operator. The SNNM is represented by linear differential inclusion (LDI), which allows taking advantage of the linear matrix inequality (LMI) approach in the stability analysis or other performance analysis of SNNM. By combining a number of different Lyapunov functions with S-procedure, some useful stability theorems for continuous SNNM and discrete-time SNNM were derived, whose conditions were formulated as LMIs. Some examples show that the proposed SNNM can be applied in analyzing the stability of recurrent neural network, and synthesizing the neural network control system.
Keywords:standard neural network model (SNNM)  discrete-time  linear matrix inequality (LMI)  linear differential inclusion(LDI)  nonlinear control
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《浙江大学学报(工学版)》浏览原始摘要信息
点击此处可从《浙江大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号