首页 | 本学科首页   官方微博 | 高级检索  
     


High-surface-area CoTMPP/C synthesized by ultrasonic spray pyrolysis for PEM fuel cell electrocatalysts
Authors:Hansan Liu
Affiliation:Institute for Fuel Cell Innovation, National Research Council of Canada, 4250 Wesbrook Mall, Vancouver, BC, Canada V6T 1W5
Abstract:Ultrasonic spray pyrolysis (USP) was used to synthesize a high-surface-area CoTMPP/C catalyst for oxygen reduction reaction (ORR). SEM micrographs showed that the USP-derived CoTMPP/C consists of spherical, porous and uniform particles with a diameter of 2-5 μm, which is superior to that with a random morphology and large particle sizes (up to 100 μm) synthesized by the conventional heat-treatment method. BET results revealed that the USP-derived catalyst had a higher specific surface area (834 m2 g−1) than the conventional one. Cyclic voltammetric, rotating ring-disk electrode (RRDE) and H2-air PEM fuel cell testing were employed to evaluate the USP-derived CoTMPP/C. The kinetic current density of the USP-derived catalyst at 0.7 V versus NHE was two times higher than that of the conventional catalyst. Compared to Pt/C catalyst, the USP-derived CoTMPP/C catalyst showed a strong methanol tolerance and a higher ORR activity in the presence of methanol. In a H2-air PEM fuel cell with USP-derived CoTMPP/C as the cathode catalyst, the cell performance was much higher than that with conventional heat-treated CoTMMP/C as the catalyst.
Keywords:Ultrasonic spray pyrolysis  CoTMPP  Macrocycles  Electrocatalyst  Oxygen reduction  PEM fuel cell
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号