首页 | 本学科首页   官方微博 | 高级检索  
     


Electro-Fenton degradation of antimicrobials triclosan and triclocarban
Authors:Ignasi Sirés  Nihal Oturan  Rosa María Rodríguez  Enric Brillas
Affiliation:a Laboratori d’Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
b Université de Marne la Vallée, Laboratoire des Géomatériaux et Géologie de l’Ingénieur, 5 Boulevard Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée Cedex 2, France
Abstract:The antimicrobials triclosan (2,4,4′-trichloro-2′-hydroxydiphenyl ether) and triclocarban (N-(4-chlorophenyl)-N′-(3,4-dichlorophenyl)urea) have been degraded by four electro-Fenton systems using undivided electrolytic cells with a Pt or boron-doped diamond (BDD) anode and a carbon felt or O2 diffusion cathode. The main oxidant is hydroxyl radical (radical dotOH) produced both on the anode surface from water oxidation and in the medium by Fenton's reaction, which takes place between electrogenerated H2O2 and Fe2+ coming from cathodic reduction of O2 and Fe3+, respectively. Triclosan from saturated aqueous solutions of pH 3.0 is completely removed in all cells, decreasing its decay rate in the order: Pt/carbon felt > BDD/carbon felt > Pt/O2 diffusion > BDD/O2 diffusion, in agreement with their radical dotOH generation ability from Fenton's reaction. Glyoxylic, maleic and oxalic acids are identified as aliphatic intermediates. Complexes between oxalic acid and iron ions persist largely in solution, although Fe2+-oxalato complexes are mineralized by radical dotOH in the medium and Fe3+-oxalato complexes are destroyed by radical dotOH on BDD. Analogous treatments of more concentrated triclosan solutions using a 20:80 (v/v) acetonitrile/water mixture as solvent evidence the role of hydroxyl radicals along the degradation. In this hydroorganic medium hydroxylated derivatives such as 2,4-dichlorophenol, 4-chlorocatechol, chlorohydroquinone and chloro-p-benzoquinone, and carboxylic acids such as maleic, oxalic, formic and acetic acids are detected as products. Complete destruction of iron-oxalato complexes and released Cl ion involves some oxidizing species coming from parallel acetonitrile oxidation. The same electro-Fenton systems also yield the overall removal of triclocarban in acetonitrile/water mixtures, giving rise to urea, hydroquinone, chlorohydroquinone, 1-chloro-4-nitrobenzene and 1,2-dichloro-4-nitrobenzene as primary intermediates.
Keywords:Triclosan  Triclocarban  Electro-Fenton  Oxidation products  Water treatment
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号