首页 | 本学科首页   官方微博 | 高级检索  
     


Sensitivity analysis of nanoparticles pushing critical conditions in 2-D controlled nanomanipulation based on AFM
Authors:M H Korayem  M Zakeri
Affiliation:1. Robotic Research Laboratory, College of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
Abstract:This paper investigates the sensitivity of critical parameters in AFM-based nanomanipulation, including the nanoparticle pushing force and time versus changing all parameters of the nanomanipulation process. The presented model includes both adhesional and normal friction forces. Also, pull-off forces are modeled by using the Johnson–Kendall–Roberts (JKR) contact mechanics model. Dynamic equations are developed based on the free body diagram of the pushing system, including AFM cantilever and probe, nanoparticle, and substrate. Dynamic simulation of gold particle manipulation on a silicon substrate is performed. In this model, the nanoparticle can be traced at every moment and at the same time all the dynamics and deformations of nanoparticle can be achieved from numerical simulation. Depending on obtained diagrams for parameters sensitivity, the suggested behavior will be followed by the particle such as rolling, sliding, stick-slip, and rotation. Its novelty is that the sensitivity of critical force and critical time for particle pushing on the substrate are obtained for all parameters. This is important for designing and choosing of geometry and materials of AFM, nanoparticle, and substrate. Also this is effective on choosing of proper initial condition in pushing purposes. Finally, it can be used to adjust proper pushing time and force for an accurate and successful pushing and assembly, and real-time visualization during micro/nanomanipulation using real-time force data.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号