首页 | 本学科首页   官方微博 | 高级检索  
     

结合显著性的GrabCut及在骨髓细胞图像分割中的应用
引用本文:陈林伟,吴向平. 结合显著性的GrabCut及在骨髓细胞图像分割中的应用[J]. 中国计量学院学报, 2014, 0(1): 87-92
作者姓名:陈林伟  吴向平
作者单位:中国计量学院信息工程学院;
基金项目:浙江省科技厅公益技术研究项目(No.2011C31020,2012C31020)
摘    要:针对传统GrabCut算法需要用户交互缺点,提出一种基于上下文感知显著性的GrabCut的改进的图像分割算法.首先用上下文感知得到待分割图像的显著图,然后由二值化的显著图确定GrabCut算法的初始化区域,再通过迭代使能量函数最小化分割出目标,算法应用于骨髓细胞图像分割上.实验结果表明,此算法能避免以往细胞分割算法如支持向量机、K-Means等参数调整问题,总体误差率较低,自动化程度高,鲁棒性强.

关 键 词:骨髓细胞  上下文感知  GrabCut算法  非交互  图像分割

Combining saliency map and GrabCut for the segmentation of bone marrow cells images
CHEN Linwei,WU Xiangping. Combining saliency map and GrabCut for the segmentation of bone marrow cells images[J]. Journal of China Jiliang University, 2014, 0(1): 87-92
Authors:CHEN Linwei  WU Xiangping
Affiliation:(College of Information Engineering, China Jiliang University, Hangzhou 310018, China)
Abstract:In view of the disadvantages of user interaction in traditional GrabCut algorithms, an improved GrabCut algorithm for image segmentation based on the context-aware method was proposed. Firstly the saliency map for the bone marrow cells image was obtained by the context-aware algorithm. The initialization of GrabCut algorithm was determined by the binarized saliency map. And then the target was segmented by energy minimization. The algorithm was applied to bone marrow cell image segmentation. Experimental results show that it can avoid the parameters adjustment problem which arises in support vector machines and K-Means. It also has a relatively low overall error rate with high automation and strong robustness.
Keywords:bone marrow cells  context-aware  GrabCut algorithm  non-interactive  image segmentation
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号