首页 | 本学科首页   官方微博 | 高级检索  
     


Design of optimal controllers for spatially invariant systems with finite communication speed
Authors:Makan Fardad  Mihailo R Jovanovi?[Author vitae]
Affiliation:aDepartment of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY 13244, United States;bDepartment of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States
Abstract:We consider the problem of designing optimal distributed controllers whose impulse response has limited propagation speed. We introduce a state-space framework in which all spatially invariant systems with this property can be characterized. After establishing the closure of such systems under linear fractional transformations, we formulate the H2 optimal control problem using the model-matching framework. We demonstrate that, even though the optimal control problem is non-convex with respect to some state-space design parameters, a variety of numerical optimization algorithms can be employed to relax the original problem, thereby rendering suboptimal controllers. In particular, for the case in which every subsystem has scalar input disturbance, scalar measurement, and scalar actuation signal, we investigate the application of the Steiglitz–McBride, Gauss–Newton, and Newton iterative schemes to the optimal distributed controller design problem. We apply this framework to examples previously considered in the literature to demonstrate that, by designing structured controllers with infinite impulse response, superior performance can be achieved compared to finite impulse response structured controllers of the same temporal degree.
Keywords:Optimal distributed control  Cone causality  Funnel causality  Quadratic invariance  Finite propagation speed  Spatially invariant systems
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号