首页 | 本学科首页   官方微博 | 高级检索  
     


Reaction rate constant of methane clathrate formation
Authors:Sebastien Bergeron
Affiliation:Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Canada H3A 2B2
Abstract:Particle size distribution measurements were performed during the growth stage of methane hydrate formation in a semi-batch stirred tank crystallizer. Experiments were carried out at temperatures between 275.1 and 279.2 K and pressures ranging from 3873 to 5593 kPa. The reaction rate constant of methane hydrate formation was determined using the model of Bergeron and Servio (AIChE J 2008;54:2964). The experimental reaction rate constant was found to increase with temperature, following an Arrhenius-type relationship, from 8.3 × 10−8 m/s to 6.15 × 10−7 m/s over the 4° range investigated, resulting in an activation energy of 323 kJ/mol. An increase in pressure of approximately 600 kPa did not have any effect on the reaction rate constant. Population balances, based on the measured critical nuclei diameter and that predicted by homogeneous nucleation theory, were also used for comparison purposes. The initial number of hydrate particles was calculated using the mole fraction of methane in the bulk liquid phase and compared to that predicted by an energy balance.
Keywords:Methane hydrate   Kinetics   Reaction rate constant
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号