首页 | 本学科首页   官方微博 | 高级检索  
     


Tribological properties of aluminum alloy matrix TiB2 composite prepared by in situ processing
Authors:C. A. Caracostas  W. A. Chiou  M. E. Fine  H. S. Cheng
Affiliation:(1) Present address: Department of Materials Science and Engineering, Northwestern University, USA;(2) Abrasives Division, Norton Co., 01615 Worcester, MA;(3) the Dept. of Mechanical Engineering, Northwestern University, 60208 Evanston, IL
Abstract:An investigation of the wear behavior, in lubricated sliding and rolling of in situ prepared TiB2 particle-reinforced 2024 T4 Al alloy matrix composites against 52100 steel and hardened pearlitic nodular cast iron, respectively, was undertaken. In sliding contact, the 10 vol pct 0.3-μm TiB2-metal matrix composite (MMC) showed slightly less wear than the 10 vol pct 1.3-μm TiB2-MMC. Transmission electron microscopy of cross sections, taken normal to the wear track and parallel to the sliding direction, revealed that the TiB2 particles on the wear track were polished and particle pullout was largely absent. This was attributed to the strong interfacial bonding between the Al-alloy matrix and the TiB2 reinforcing phase. The TiB2 particles on the wear track inhibited spalling. Subsurface damage of the MMC did not occur. The wear of the steel mating surfaces worn against the TiB2-MMCs was minor and caused by the cutting action of the TiB2 particles that resided on the MMC wear track. In rolling contact, the 0.3-μm-size TiB2-MMC showed 5 times higher weight loss than the 1.3-μm TiB2-MMC for the same content of reinforcement, but the weight loss of the cast iron mating surface was less for the former. For the smaller particle size, the wear of 5 and 10 vol pct TiB2-MMCs was the same. A high density of surface cracks was present on the wear track of the 0.3-μm TiB2-MMC but not on the 1.3-μm MMC. The significance of strong particle/matrix interfacial bonding and particle size effect on the wear behavior of ceramic particulate-reinforced MMCs in lubricated sliding and rolling wear is discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号