首页 | 本学科首页   官方微博 | 高级检索  
     


Energy Crossovers in Nanocrystalline Zirconia
Authors:Michael W Pitcher  Sergey V Ushakov  Alexandra Navrotsky  Brian F Woodfield  Guangshe Li  Juliana Boerio-Goates  Brian M Tissue
Affiliation:Thermochemistry Facility and NEAT ORU, University of California at Davis, California 95616; Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602; Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
Abstract:The synthesis of nanocrystalline powders of zirconia often produces the tetragonal phase, which for coarse-grained powders is stable only at high temperatures and transforms into the monoclinic form on cooling. This stability reversal has been suggested to be due to differences in the surface energies of the monoclinic and tetragonal polymorphs. In the present study, we have used high-temperature oxide melt solution calorimetry to test this hypothesis directly. We measured the excess enthalpies of nanocrystalline tetragonal, monoclinic, and amorphous zirconia. Monoclinic ZrO2 was found to have the largest surface enthalpy and amorphous zirconia the smallest. Stability crossovers with increasing surface area between monoclinic, tetragonal, and amorphous zirconia were confirmed. The surface enthalpy of amorphous zirconia was estimated to be 0.5 J/m2. The linear fit of excess enthalpies for nanocrystalline zirconia, as a function of area from nitrogen adsorption (BET) gave apparent surface enthalpies of 6.4 and 2.1 J/m2, for the monoclinic and tetragonal polymorphs, respectively. Due to aggregation, the surface areas calculated from crystallite size are larger than those measured by BET. The fit of enthalpy versus calculated total interface/surface area gave surface enthalpies of 4.2 J/m2 for the monoclinic form and 0.9 J/m2 for the tetragonal polymorph. From solution calorimetry, the enthalpy of the monoclinic to tetragonal phase transition for ZrO2 was estimated to be 10±1 kJ/mol and amorphization enthalpy to be 34±2 kJ/mol.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号