首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanisms of Streamer Propagation Affected by Driven Voltage Polarity in a Cold Atmospheric Pressure Plasma Jet
Abstract:A two-dimensional self-consistent fluid model is used to investigate the effects of DC-voltage polarity in plasma initiation and propagation of helium plasma jet.The simulation results indicate that the difference in initial breakdown for the positive jet and negative jet leads to a difference in the electron density of about 4 orders of magnitude,even with the same initial electric field,which also influences the subsequent propagation.In the propagation process of negative jets,the ionization process exists in a longer gas channel behind the streamer head.In addition,the drift process to the infinite grounded electrode driven by the electric field results in higher energy consumption in the ionization process.However,in the positive jet,the ionization process mainly exists in the streamer head.Therefore,the differences in the initial breakdown and propagation process make the electric field intensity and the ionization weaker in the streamer head of the negative jet,which explains the weaker and shorter appearance of the negative jet compared to the positive jet.Our model can adequately reproduce the experimental results,viz.a bullet-like propagation in the positive jet and a continuous plasma plume in the negative jet.Furthermore,it also indicates that the streamer velocity shows the same variations as the electron drift velocity for both positive and negative jets.
Keywords:plasma jet  polarity  plasma bullets  continuous plasma plume  
本文献已被 CNKI 等数据库收录!
点击此处可从《等离子体科学和技术》浏览原始摘要信息
点击此处可从《等离子体科学和技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号