首页 | 本学科首页   官方微博 | 高级检索  
     


A Personalized Search Model Using Online Social Network Data Based on a Holonic Multiagent System
Authors:Meijia Wang  Qingshan Li  Yishuai Lin
Affiliation:School of Computer Science and Technology
Abstract:Personalized search utilizes user preferences to optimize search results, and most existing studies obtain user preferences by analyzing user behaviors in search engines that provide click-through data. However, the behavioral data are noisy because users often clicked some irrelevant documents to find their required information, and the new user cold start issue represents a serious problem, greatly reducing the performance of personalized search. This paper attempts to utilize online social network data to obtain user preferences that can be used to personalize search results, mine the knowledge of user interests, user influence and user relationships from online social networks, and use this knowledge to optimize the results returned by search engines. The proposed model is based on a holonic multiagent system that improves the adaptability and scalability of the model. The experimental results show that utilizing online social network data to implement personalized search is feasible and that online social network data are significant for personalized search.
Keywords:personalized search  online social network  holonic multiagent system
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号