a Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
b Industrial Engineering Program, University of Washington, Seattle, WA 98195, USA
Abstract:
This paper presents a design methodology for a laminated composite stiffened panel, subjected to multiple in-plane loads and bending moments. Design variables include the skin and stiffener ply orientation angles and stiffener geometry variables. Optimum designs are sought which minimize structural weight and satisfy mechanical performance requirements. Two types of mechanical performance requirements are placed on the panel, maximum strain and minimum strength. Minimum weight designs are presented which document that the choice of mechanical performance requirements cause changes in the optimum design. The effects of lay-up constraints which limit the ply angles to user specified values, such as symmetric or quasi-isotropic laminates, are also investigated.