首页 | 本学科首页   官方微博 | 高级检索  
     

基于RBF神经网络的水下机器人传感器状态监测方法研究
引用本文:张铭钧,孙瑞琛,王玉甲. 基于RBF神经网络的水下机器人传感器状态监测方法研究[J]. 哈尔滨工程大学学报, 2005, 26(6): 726-731
作者姓名:张铭钧  孙瑞琛  王玉甲
作者单位:哈尔滨工程大学,机电工程学院,黑龙江,哈尔滨,150001;哈尔滨工程大学,机电工程学院,黑龙江,哈尔滨,150001;哈尔滨工程大学,机电工程学院,黑龙江,哈尔滨,150001
摘    要:为了实现水下机器人多传感器状态监测,根据其工作环境及所配置传感器的数量,提出了基于径向基函数(RBF)神经网络的传感器状态监测方法,建立了二级神经网络监测模型,解决了多传感器故障诊断和信号恢复的问题.基于某型水下机器人海中试验数据进行计算机仿真试验的结果,验证了该方法的有效性和可行性.

关 键 词:水下机器人传感器  RBF神经网络  状态监测  数据融合
文章编号:1006-7043(2005)06-0726-06
收稿时间:2005-04-03
修稿时间:2005-04-03

Research on condition monitor for AUV sensors based on RBF neural network
ZHANG Ming-jun,SUN Rui-chen,WANG Yu-jia. Research on condition monitor for AUV sensors based on RBF neural network[J]. Journal of Harbin Engineering University, 2005, 26(6): 726-731
Authors:ZHANG Ming-jun  SUN Rui-chen  WANG Yu-jia
Affiliation:School of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China
Abstract:To overcome the problem of multi-sensor condition monitoring of an autonomous underwater vehicle(AUV),a method based on a radial basis function(RBF) neural network was proposed and a two-level neural networks model was constructed.The problem of failure diagnosis and signal restoration for an AUV multi-sensor was solved.Computer simulations using experimental data from an AUV show that the proposed condition monitoring model is feasible.
Keywords:sensor of autonomous underwater vehicles(AUV)  radial basis function (RBF) neural network  condition monitoring
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号