首页 | 本学科首页   官方微博 | 高级检索  
     


Press forming a 0/90 cross-ply advanced thermoplastic composite using the double-dome benchmark geometry
Affiliation:1. School of Engineering, James Watt Building (South), University of Glasgow, Glasgow G12 8QQ, UK;2. INEGI, Composite Materials and Structures Research, Institute of Mechanical Engineering and Industrial Management, Porto 4200-465, Portugal;1. Mercedes-Benz Sindelfingen, PWT/VFT HPC F150, 71059 Sindelfingen, Germany;2. Technische Universität Dresden, Institute of Textile Machinery and High Performance Material Technology, 01062 Dresden, Germany;1. Institute of Aircraft Design, University of Stuttgart, Germany;2. School of Engineering, University of Glasgow, UK;1. Université de Lyon, LaMCoS, INSA-Lyon, F-69621 Villeurbanne, France;2. Mecanium, 66 Boulevard N. Bohr, 69603 Villeurbanne, France;1. CIKONI Composites Innovation, 70569 Stuttgart, Germany;2. Technische Universität Dresden, Institute of Textile Machinery and High Performance Material Technology (ITM), 01062 Dresden, Germany;3. Technische Universität Dresden, Dresden Center for Computational Materials Science (DCMS), 01062 Dresden, Germany;1. Department of Mechanical Engineering, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854, USA;2. US Army Natick Soldier Research, Development & Engineering Center, 15 Kansas St., Natick, MA 01760, USA;1. University of Lille, GEMTEX, ENSAIT, 2 allée Louise et Victor Champier, 59056 Roubaix, France;2. LGP, ENIT, 47 avenue d''Azereix, 65016 Tarbes, France
Abstract:A pre-consolidated thermoplastic advanced composite cross-ply sheet comprised of two uniaxial plies orientated at 0/90° has been thermoformed using tooling based on the double-dome bench-mark geometry. Mitigation of wrinkling was achieved using springs to apply tension to the forming sheet rather than using a friction-based blank-holder. The shear angle across the surface of the formed geometry has been measured and compared with data collected previously from experiments on woven engineering fabrics. The shear behaviour of the material has been characterised as a function of rate and temperature using the picture frame shear test technique. Multi-scale modelling predictions of the material’s shear behaviour have been incorporated in finite element forming predictions; the latter are compared against the experimental results.
Keywords:B  Thermomechanical  C  Finite element analysis (FEA)  D  Mechanical testing  E  Forming
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号