首页 | 本学科首页   官方微博 | 高级检索  
     


Large-scale,high-resolution agricultural systems modeling using a hybrid approach combining grid computing and parallel processing
Affiliation:1. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Anwai, Beijing 100101, China;2. CSIRO Ecosystem Sciences, Waite Campus, Urrbrae, SA 5064, Australia;3. CSIRO Land and Water, Black Mountain, Canberra, ACT 2601, Australia;4. Plant Functional Biology and Climate Change Cluster, School of the Environment, University of Technology, Sydney, Broadway 2007 NSW, PO Box 123, Australia;5. Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;1. CSIRO Agriculture, P.O. Box 102, Toowoomba, QLD 4350, Australia;2. ICRISAT, Patancheru, Hyderabad, Telangana 502324, India;3. University of Southern Queensland, Faculty of Engineering and Surveying, Toowoomba, QLD 4350, Australia;4. NSWDPI, Narrabri, NSW 2390, Australia;1. University of Milan, DEMM, Cassandra Lab, Italy;2. University of Milan, DiSAA, Cassandra Lab, Italy;3. University of Milan, Cropping Systems MS Course, Italy;1. Nucleo di Ricerca sulla Desertificazione – NRD, University of Sassari, Viale Italia 39, 07100 Sassari, Italy;2. Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Centro di ricerca Agricoltura e Ambiente, CREA-AA, via della Navicella 2-4, Rome, Italy;3. Dipartimento di Scienze Agrarie Alimentari ed Agro-Ambientali - DISAAA-a, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;4. Department of Geological Sciences, Michigan State University, 288 Farm Lane, East Lansing, MI 48824, USA;5. Dipartimento di Scienze delle Produzioni Agroalimentari e dell''Ambiente – DISPAA, University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy;6. Dipartimento di Scienze Agroalimentari, Ambientali ed Animali – DI4A, University of Udine, via delle Scienze 6, 33100 Udine, Italy;7. Blackland Research & Extension, 720 East Blackland Road Temple, TX 76502, USA;8. Dipartimento di Agraria, University of Sassari, Viale Italia 39,07100 Sassari, Italy;9. Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Centro di ricerca Agricoltura e Ambiente, CREA-AA, Via Celso Ulpiani 5, 70125 Bari, Italy;10. Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria, Centro di ricerca Agricoltura e Ambiente, CREA-AA, Via di Corticella, 133 - 40128 Bologna, Italy;11. Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Marche Polytechnic University, via Brecce Bianche, 60131 Ancona, Italy;12. Centro Nazionale delle Ricerche, Istituto di Biometeorologia CNR-Ibimet, Via Taurini, 19, 00185 Roma, Italy;13. Agenzia regionale per la prevenzione, l´ambiente e l´energia dell´Emilia-Romagna, Servizio Idro-Meteo-Clima di Bologna Emilia-Romagna Arpae-SIMC, Viale Silvani 6, 40122 Bologna, Italy;14. Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale G.Fanin 50, 40127 Bologna, Italy;1. School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, QLD, Australia;2. CSIRO Land and Water, GPO Box 1666, Canberra, ACT 2601, Australia;3. Queensland Department of Agriculture and Fisheries, PO Box 2282, Toowoomba, Qld 4350, Australia;4. School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD, Australia;5. Queensland Alliance for Agriculture and Food Innovation, School of Crop and Food Sciences, University of Queensland, Gatton, Qld 4343, Australia;1. School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, Australia;2. Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, Australia;1. Landcare Research, New Zealand;2. Plant and Food Research, New Zealand
Abstract:The solution of complex global challenges in the land system, such as food and energy security, requires information on the management of agricultural systems at a high spatial and temporal resolution over continental or global extents. However, computing capacity remains a barrier to large-scale, high-resolution agricultural modeling. To model wheat production, soil carbon, and nitrogen dynamics in Australia's cropping regions at a high resolution, we developed a hybrid computing approach combining parallel processing and grid computing. The hybrid approach distributes tasks across a heterogeneous grid computing pool and fully utilizes all the resources of computers within the pool. We simulated 325 management scenarios (nitrogen application rates and stubble management) at a daily time step over 122 years, for 12,707 climate–soil zones using the Windows-based Agricultural Production Systems SIMulator (APSIM). These simulations would have taken over 30 years on a single computer. Our hybrid high performance computing (HPC) approach completed the modeling within 10.5 days—a speed-up of over 1000 times—with most jobs finishing within the first few days. The approach utilizes existing idle organization-wide computing resources and eliminates the need to translate Windows-based models to other operating systems for implementation on computing clusters. There are however, numerous computing challenges that need to be addressed for the effective use of these techniques and there remain several potential areas for further performance improvement. The results demonstrate the effectiveness of the approach in making high-resolution modeling of agricultural systems possible over continental and global scales.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号