首页 | 本学科首页   官方微博 | 高级检索  
     


The effect of TiN inclusions and deformation-induced martensite on the corrosion properties of AISI 321 stainless steel
Affiliation:1. Slovenian National Building and Civil Engineering Institute, Dimi?eva 12, 1000 Ljubljana, Slovenia;2. Akrapovi? d.d., Malo Hudo 8 A, 1295 Ivan?na Gorica, Slovenia;1. Centre des Matériaux, Mines ParisTech, B.P. 87, 91003 Evry Cedex, France;2. Georgia Institute of Technology, Atlanta, GA 30332-0245, USA;3. Washington State University, Pullman, WA 99164-2920, USA;1. Department of Materials Science, Tohoku University, 6-6-02, Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan;2. National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba 305-0047, Japan;1. Département des Etudes Mécaniques et Essais de Matériaux, Division Technologie Nucléaire, Centre de Recherche Nucléaire de Birine, BP. 180, Ain Oussera, Djelfa, 17200, Algeria;2. Faculté de Génie Mécanique et Génie des Procédés, Département de Construction Mécanique et Productique, Université de Science et Technologie Houari Boumediène, B.P. 32, El-Alia, Bab-Ezzouar, Alger, 16111, Algeria;3. Laboratoire de biomatériaux pour la santé (LBPS) & Laboratoire de chimie, structure et propriétés de biomatériaux et d’agents thérapeutiques (CSPBAT), UMR CNRS 7244, Université Paris 13, Institut Galilée 99, avenue J. B. Clément, 93430, Villetaneuse, France;1. University of Science and Technology of China, Hefei 230000, China;2. Key Laboratory of Nuclear Materials and Safety Assessment, Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;3. Shanghai Nuclear Engineering Research and Design Institute, Shanghai 200233, China;1. Key Laboratory for Corrosion and Protection of the Ministry of Education, Institute of Advanced Materials & Technology, University of Science and Technology Beijing, Beijing, China;2. Department of Materials and Chemistry, Research Group Electrochemical and Surface Engineering (SURF), Vrije Universiteit Brussel, Brussels, Belgium;3. Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
Abstract:Stainless steel of type 321 is commonly used for the production of exhaust systems because of its temperature resistance and welding properties, which are better than those of AISI 304 or similar steels. AISI 321 is a titanium stabilized austenitic stainless steel, where this element is added to form carbides in order to avoid chromium impoverishment due to chromium carbide formation. Cold shaping can, in the case of austenitic stainless steel, cause the formation of deformation induced martensite, which can improve its mechanical properties, but unfortunately can also spoil its good resistance to corrosion. Titanium nitride inclusions are cathodic with respect to steels, and therefore cause their anodic dissolution. Martensite is, however, more susceptible to the corrosion than austenite in steels. The main aim of this study was to analyze the pitting corrosion and stress corrosion cracking which is initiated on prototype cold-formed outer exhaust sleeves during the testing of different cleaning procedures before chromium plating. Various microscopic methods were used to identify the initiation of corrosion and its propagation.
Keywords:Austenitic stainless steel  Titanium nitride inclusions  Deformation induced martensite  Pitting corrosion  Stress corrosion cracking
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号